論文の概要: Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles
- arxiv url: http://arxiv.org/abs/2407.08434v1
- Date: Thu, 11 Jul 2024 12:17:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:39:27.537574
- Title: Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles
- Title(参考訳): Open-Access Synthetic Profile を用いたトランスファーラーニングによるエネルギーコミュニティの負荷予測の改善
- Authors: Lukas Moosbrugger, Valentin Seiler, Gerhard Huber, Peter Kepplinger,
- Abstract要約: 10GWエネルギーユーティリティの予測エラーを1%削減すれば、年間最大1.6億ドルの節約が可能になる。
本稿では,移動学習手法を用いて,オープンアクセス型合成負荷プロファイルを用いた負荷予測モデルの事前学習を提案する。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to a conservative estimate, a 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually. In our context, achieving precise forecasts of future power consumption is crucial for operating flexible energy assets using model predictive control approaches. Specifically, this work focuses on the load profile forecast of a first-year energy community with the common practical challenge of limited historical data availability. We propose to pre-train the load prediction models with open-access synthetic load profiles using transfer learning techniques to tackle this challenge. Results show that this approach improves both, the training stability and prediction error. In a test case with 74 households, the prediction mean squared error (MSE) decreased from 0.34 to 0.13, showing transfer learning based on synthetic load profiles to be a viable approach to compensate for a lack of historic data.
- Abstract(参考訳): 保守的な推計によると、10GWエネルギーユーティリティの予測誤差を1%削減すれば、年間最大1.6億ドルの節約が可能である。
この文脈では、モデル予測制御を用いたフレキシブルエネルギー資産の運用には、将来の電力消費の正確な予測が不可欠である。
特に、この研究は、歴史的データ可用性の制限という共通の実践的課題を伴う1年目のエネルギーコミュニティの負荷プロファイル予測に焦点を当てている。
本稿では,この課題に対処するためにトランスファーラーニング手法を用いて,オープンアクセス型合成負荷プロファイルを用いた負荷予測モデルの事前学習を提案する。
その結果,本手法はトレーニング安定性と予測誤差の両方を改善していることがわかった。
74世帯を対象にした試験では, 推定平均二乗誤差(MSE)が0.34から0.13に減少し, 履歴データの欠如を補うために, 合成負荷プロファイルに基づく伝達学習が有効であった。
関連論文リスト
- Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort? [0.0]
この研究は、エネルギーコミュニティにおける短期負荷予測のための最先端ディープラーニングモデルの広範なベンチマークを提供する。
LSTM、xLSTM、Transformerは、KNN、合成負荷モデル、永続化予測モデルなどのベンチマークと比較される。
論文 参考訳(メタデータ) (2025-01-09T06:29:50Z) - Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGEは、人間と機械が生成した予測を組み合わせたハイブリッド予測システムである。
このシステムは、確率と評価されたスキルに基づいて、人間と機械の予測の重み付けを集約する。
機械による予測にアクセスできる熟練した予測者は、過去のデータしか見ていない者よりも優れていた。
論文 参考訳(メタデータ) (2024-12-14T22:09:45Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
本稿では,解釈可能なP-スプラインから構築され,自己回帰後処理によって強化された一般化付加モデル(GAM)を用いた新しい予測手法を提案する。
提案手法は欧州24カ国の負荷データに基づいて評価される。
論文 参考訳(メタデータ) (2024-05-27T11:41:41Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
エネルギー需要予測は、需要と供給のバランスを保ち、電力網の安定的な負荷を維持するためにエネルギー産業内で実施される重要な課題である。
供給が信頼性の低い再生可能エネルギー生成へと移行するにつれ、スマートメーターはこれらの予測タスクを支援する上で不可欠な要素であることが証明される。
しかし、プライバシーを意識した消費者は、詳細な消費データへの侵入を恐れている。
論文 参考訳(メタデータ) (2021-05-27T17:33:09Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
本稿では,隠れマルコフモデルの適応型オンライン学習に基づく確率的負荷予測手法を提案する。
本稿では,理論的保証のある学習予測手法を提案し,その性能を複数のシナリオで実験的に評価する。
その結果,提案手法は様々なシナリオにおいて既存手法の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-11-30T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。