Hyperfine van der Waals repulsion between open-shell polar molecules
- URL: http://arxiv.org/abs/2507.12167v1
- Date: Wed, 16 Jul 2025 11:55:08 GMT
- Title: Hyperfine van der Waals repulsion between open-shell polar molecules
- Authors: Etienne F. Walraven, Tijs Karman,
- Abstract summary: We describe a novel type of interaction between open-shell polar molecules at sub-millikelvin temperatures.<n>This hyperfine van der Waals interaction occurs between two molecules in two rotational states that differ by one quantum.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a novel type of interaction between open-shell polar molecules at sub-millikelvin temperatures. This hyperfine van der Waals interaction occurs between two molecules in two rotational states that differ by one quantum. Normally, this induces resonant dipolar interactions that lead to rapid collisional loss. For specific hyperfine states, however, selection rules prevent this. One can effectively turn off the dipolar interaction by merely flipping a nuclear spin. The resulting van der Waals interaction can be repulsive and can suppress collisional loss. We focus on laser-coolable CaF, but show this effect occurs universally for open-shell molecules, including MgF, SrF, BaF and YO. We propose that this effect could be measured by merging molecules in optical tweezers, where flipping a spin in one of the tweezers enables tuning of collision rates by five orders of magnitude.
Related papers
- Rotational-state dependence of interactions between polar molecules [0.0]
We show that where molecules are in rotational states that differ by more than one quantum, they exhibit repulsive van der Waals interactions.
At temperatures below a millikelvin, this effect can reduce collisional loss by multiple orders of magnitude.
These repulsive interactions lead to applications in quantum simulation and impurity physics with ultracold polar molecules.
arXiv Detail & Related papers (2024-01-11T14:59:43Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Resonant and first-order dipolar interactions between ultracold
molecules in static and microwave electric fields [0.0]
We study collisions between ultracold polar molecules polarized by microwave or static electric fields.
We calculate the loss in two-body collisions that is observable experimentally.
Results are presented numerically for fermionic $23$Na$40$K and bosonic $23$Na$39$K molecules.
arXiv Detail & Related papers (2021-06-03T05:58:20Z) - Resonant collisional shielding of reactive molecules using electric
fields [2.830197032154302]
We use an external electric field to shift excited collision channels of ultracold molecules into degeneracy with the initial collision channel.
Resonant dipolar interactions mix the channels at long range, dramatically altering the intermolecular potential.
We realize a long-lived sample of polar molecules in large electric fields.
arXiv Detail & Related papers (2020-09-16T04:24:54Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\
m{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Dipolar evaporation of reactive molecules to below the Fermi temperature [2.9989215527241453]
Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
arXiv Detail & Related papers (2020-07-23T22:02:59Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Resonant dipolar collisions of ultracold molecules induced by microwave
dressing [0.0]
We demonstrate microwave dressing on ultracold, fermionic $23$Na$40$K ground-state molecules.
We observe resonant dipolar collisions with cross sections exceeding three times the $s$-wave unitarity limit.
arXiv Detail & Related papers (2020-03-05T18:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.