論文の概要: Comparative Analysis of CNN Performance in Keras, PyTorch and JAX on PathMNIST
- arxiv url: http://arxiv.org/abs/2507.12248v1
- Date: Wed, 16 Jul 2025 13:57:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.415737
- Title: Comparative Analysis of CNN Performance in Keras, PyTorch and JAX on PathMNIST
- Title(参考訳): PathMNISTにおけるKeras, PyTorch, JAXのCNN性能の比較解析
- Authors: Anida Nezović, Jalal Romano, Nada Marić, Medina Kapo, Amila Akagić,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は医用画像分類に広く採用されている。
CNNは、モデル開発とデプロイメントにおいて独特なアドバンテージを提供するが、医療画像のタスクにおけるそのパフォーマンスは、まだ過小評価されていない。
本稿では、Keras、PyTorch、JAXフレームワークにまたがるCNN実装を包括的に分析する。
実世界のアプリケーションに適用可能なトレーニング効率,分類精度,推論速度を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has significantly advanced the field of medical image classification, particularly with the adoption of Convolutional Neural Networks (CNNs). Various deep learning frameworks such as Keras, PyTorch and JAX offer unique advantages in model development and deployment. However, their comparative performance in medical imaging tasks remains underexplored. This study presents a comprehensive analysis of CNN implementations across these frameworks, using the PathMNIST dataset as a benchmark. We evaluate training efficiency, classification accuracy and inference speed to assess their suitability for real-world applications. Our findings highlight the trade-offs between computational speed and model accuracy, offering valuable insights for researchers and practitioners in medical image analysis.
- Abstract(参考訳): 深層学習は、特に畳み込みニューラルネットワーク(CNN)の採用によって、医用画像分類の分野を著しく進歩させてきた。
Keras、PyTorch、JAXといった様々なディープラーニングフレームワークは、モデル開発とデプロイにおいてユニークなアドバンテージを提供します。
しかし、医用画像のタスクにおける比較性能はいまだに未定である。
本研究では、ベンチマークとしてPathMNISTデータセットを用いて、CNNの実装を網羅的に分析する。
実世界のアプリケーションに適用可能なトレーニング効率,分類精度,推論速度を評価した。
本研究は, 計算速度とモデル精度のトレードオフに注目し, 医用画像解析における研究者や実践者に貴重な知見を提供するものである。
関連論文リスト
- Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
実験データから完全な分類精度を得ることができたとしても,深層学習モデルの信頼性は限られていると論じる。
大規模プロキシタスクでディープニューラルネットワークを事前トレーニングし、MOON(Mixed objective Optimization Network)を使用することで、モデルとエキスパート間の決定基盤の整合性を改善することができることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:41:31Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Rethinking model prototyping through the MedMNIST+ dataset collection [0.11999555634662634]
この作業では、MedMNIST+データセットコレクションの包括的なベンチマークを導入する。
我々は、一般的なCNN(Convolutional Neural Networks)とViT(Vision Transformer)アーキテクチャを、異なる医療データセットにわたって再評価する。
この結果から,計算効率のよいトレーニングスキームと最新の基礎モデルが,エンドツーエンドのトレーニングに有効な代替手段を提供する可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-24T10:19:25Z) - Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer [6.887244952811574]
UCTransNetのような先進的なディープラーニングモデルに先立つ適応層を提案する。
我々のアプローチは、多様な解剖学的構造と微妙な画像の詳細を扱うネットワークの能力を高める。
従来のCNNよりも、同じ数のパラメータで固定されたカーネルサイズで一貫してパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-04-17T13:18:39Z) - A Sentiment Analysis of Medical Text Based on Deep Learning [1.8130068086063336]
本稿では,変換器(BERT)の双方向エンコーダ表現を基礎的事前学習モデルとして用いた医療領域に焦点を当てた。
METS-CoVデータセットを用いて実験と解析を行い、異なるディープラーニングネットワークの統合後のトレーニング性能について検討した。
CNNモデルは、BERTのような事前訓練されたモデルと組み合わせて、小さな医療用テキストデータセットでトレーニングされた場合、他のネットワークよりも優れています。
論文 参考訳(メタデータ) (2024-04-16T12:20:49Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - DLSIA: Deep Learning for Scientific Image Analysis [45.81637398863868]
DLSIAはPythonベースの機械学習ライブラリで、さまざまな科学的領域にまたがって、さまざまなカスタマイズ可能な畳み込みニューラルネットワーク(CNN)アーキテクチャを持つ科学者や研究者に権限を与える。
DLSIAは、オートエンコーダ、チューニング可能なU-Net、パラメータリーン混合スケールネットワーク(MSDNets)などの使いやすいアーキテクチャを備えている。
論文 参考訳(メタデータ) (2023-08-02T21:32:41Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
画像データに対するエラーカーネル駆動型アクティベーションアライメントアルゴリズムを提案する。
EKDAAは、ローカルに派生したエラー送信カーネルとエラーマップを導入することで達成される。
結果は、識別不能なアクティベーション機能を利用するEKDAAトレーニングCNNに対して提示される。
論文 参考訳(メタデータ) (2022-06-03T21:14:10Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
畳み込みニューラルネットワーク(CNN)は強力な医用画像分割モデルであることが示されている。
マルチタスク学習、すなわち、複数の異なるデータセット上で単一のモデルをトレーニングすることを提唱する。
一つのCNNが、文脈を自動的に認識し、各文脈における関心の組織を正確に区分することを学ぶだけでなく、そのようなジョイントモデルの方が、より正確でより良い校正された予測を持つことも示している。
論文 参考訳(メタデータ) (2020-04-12T23:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。