論文の概要: Hybrid quantum lattice model: Polaritons, photons, and spin waves propagation
- arxiv url: http://arxiv.org/abs/2507.12319v2
- Date: Tue, 22 Jul 2025 19:13:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 14:06:49.693916
- Title: Hybrid quantum lattice model: Polaritons, photons, and spin waves propagation
- Title(参考訳): ハイブリッド量子格子モデル:偏光子、光子、スピン波伝搬
- Authors: Maritza Ahumada, Natalia Valderrama-Quinteros, Diego Tancara, Guillermo Romero,
- Abstract要約: 低次元系における量子励起の伝播の制御は量子技術にとって重要である。
本稿では,各格子ユニットが2レベルシステムと相互作用する単一モード共振器を統合する1次元ハイブリッド量子格子モデルを提案する。
この構成は、光-物質結合と量子ビット相互作用の相互作用によって、偏光子、スピン波、光子のコヒーレントな伝播を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Controlling the propagation of quantum excitations in low-dimensional systems is pivotal for quantum technologies, including communication networks and quantum simulators. We propose a one-dimensional hybrid quantum lattice model, where each lattice unit integrates a single-mode resonator that interacts with a two-level system (TLS), featuring direct coupling between adjacent TLSs. This configuration enables the coherent propagation of polaritons, spin waves, and photons, depending on the interplay between light-matter coupling and qubit-qubit interactions. Employing the time-evolving block decimation (TEBD) algorithm, we simulate the dynamics of various excitation configurations and analyze their transport characteristics using local observables. Our analysis reveals the importance of matching impedance and resonance conditions via system parameters for the propagation of different types of excitations or swapping the nature of excitations along the hybrid lattice. These findings offer insights into designing controllable quantum links and single-excitation swaps in low-dimensional quantum systems.
- Abstract(参考訳): 低次元システムにおける量子励起の伝播の制御は、通信ネットワークや量子シミュレータを含む量子技術において重要である。
本稿では,各格子ユニットが隣接するTLS間の直接結合を特徴とする2レベルシステム(TLS)と相互作用する単一モード共振器を統合する1次元ハイブリッド量子格子モデルを提案する。
この構成は、光-物質結合と量子ビット相互作用の相互作用によって、偏光子、スピン波、光子のコヒーレントな伝播を可能にする。
時間進化ブロックデシメーション(TEBD)アルゴリズムを用いて,様々な励起構成のダイナミクスをシミュレートし,その輸送特性を局所観測器を用いて解析する。
本分析では,異なる種類の励起の伝播や,ハイブリッド格子に沿って励起の性質を交換するために,システムパラメータによるインピーダンスと共振条件の一致の重要性を明らかにした。
これらの知見は、低次元量子系における制御可能な量子リンクと単一励起スワップの設計に関する洞察を与える。
関連論文リスト
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
理論的には、1次元導波路に対して動く2レベル量子ビットの配列について検討する。
この運動の周波数が2倍のクビット共鳴周波数に近づくと、光子のパラメトリック生成と量子ビットの励起を誘導する。
我々は、摂動図式技術と厳密なマスター方程式アプローチの両方を取り入れた包括的一般理論フレームワークを開発する。
論文 参考訳(メタデータ) (2024-08-30T15:54:33Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
超伝導量子干渉装置(SQUID)を用いて、右手の伝送線を左手の伝送線に接続するハイブリッドプラットフォームを提案する。
特定の共鳴条件を活性化することにより、このプラットフォームは量子光学、マルチモード量子システム、量子熱力学の異なる現象の量子シミュレータとして使用できることを示す。
論文 参考訳(メタデータ) (2024-03-13T13:15:14Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
2つ以上のフォトニック自由度(DOF)の間の超絡み合いは、新しい量子プロトコルを強化し有効にすることができる。
パルスモードと周波数ビンとの間に超絡み合った光子対の生成を実証する。
論文 参考訳(メタデータ) (2023-04-24T15:43:08Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
超伝導フォトニックバンドギャップメタマテリアルに局所的に接続された量子ビットの線形配列に基づく量子シミュレータアーキテクチャを提案する。
メタマテリアルは量子バスとして、量子ビットと量子ビットの相互作用を媒介し、また多重量子ビット状態測定のための読み出しチャネルとして機能する。
我々は、量子多体カオスに基づく測定効率の高いプロトコルを用いて、システムのハミルトニアンを特徴づける。
論文 参考訳(メタデータ) (2022-06-26T06:51:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
我々は、光子を媒介とする効果的なスピン-1系間の相互作用に、光遷移を持つマルチレベルエミッタを利用する方法を示す。
本結果は,空洞QEDおよび量子ナノフォトニクス装置で利用可能な量子シミュレーションツールボックスを拡張した。
論文 参考訳(メタデータ) (2022-06-03T14:52:34Z) - Polariton Creation in Coupled Cavity Arrays with Spectrally Disordered Emitters [0.0]
集積フォトニクスは、強い相関系における凝縮物質現象のアナログ量子シミュレーションのための有望なプラットフォームである。
オープン量子Tavis-Cummings-Hubbardフレームワークにおけるエネルギーバンド形成と波動関数特性について検討した。
実効ハミルトニアンのアプローチと組み合わせた新しいメトリクスは、固体系の空洞量子力学工学のための強力なツールボックスであることが証明された。
論文 参考訳(メタデータ) (2021-12-28T05:08:27Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
このようなハイブリッド二部量子モデルと、一対の量子ビットからなるサブシステムと、一対の発振器からなるサブシステムを利用する。
我々の基本的なモデルは、二重Jaynes-Cummingsシステムであり、このシステムは、絡み合いの移動と絡み合いの急死の両方をサポートすることが知られている。
ビームスプリッターや双極子-双極子相互作用と比較すると,Ising相互作用は突然死と出生の絡み合いに有意な影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-21T21:12:08Z) - Enhanced TEMPO algorithm for quantum path integrals with off-diagonal
system-bath coupling: applications to photonic quantum networks [0.0]
テンソルネットワークを用いた量子パス積分のための拡張TEMPOアルゴリズムを拡張した。
空間的に分離された量子二状態エミッタを用いた共振器システムへのアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-04T11:31:44Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
協調性は、量子エミッタアンサンブルが制限された光学モードでインターフェースされる光マタープラットフォームで明らかである。
このチュートリアルは、協調の開始に責任を負う行動に取り組むための理論的ツールのセットを提供する。
論文 参考訳(メタデータ) (2021-07-06T15:27:23Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
非平衡シナリオにおける単体および二体Jaynes-Cummings系の制御を提案する。
本研究は, ポラリトン交換を制御し, モット絶縁体とスーパーライクな状態の遷移に関する新たな知見を明らかにするための体系的なアプローチを提供する。
論文 参考訳(メタデータ) (2020-10-07T16:31:03Z) - Hyperentanglement in structured quantum light [50.591267188664666]
光の自由度が1つ以上の高次元量子系の絡み合いは、情報容量を増大させ、新しい量子プロトコルを可能にする。
本稿では、時間周波数およびベクトル渦構造モードで符号化された高次元・耐雑音性ハイパーエンタングル状態の関数的情報源を示す。
我々は2光子干渉と量子状態トモグラフィーによって特徴付けるテレコム波長で高い絡み合った光子対を生成し、ほぼ均一な振動と忠実さを達成する。
論文 参考訳(メタデータ) (2020-06-02T18:00:04Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
単一光子エミッタと集積フォトニック回路の結合は、量子情報科学や他のナノフォトニック応用に関係した新たな話題である。
我々は、コロイド量子ドットのハイブリッド系と窒化ケイ素導波路系のギャップモードとのカップリングについて検討した。
論文 参考訳(メタデータ) (2020-03-30T21:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。