Cluster Contrast for Unsupervised Visual Representation Learning
- URL: http://arxiv.org/abs/2507.12359v1
- Date: Wed, 16 Jul 2025 15:59:43 GMT
- Title: Cluster Contrast for Unsupervised Visual Representation Learning
- Authors: Nikolaos Giakoumoglou, Tania Stathaki,
- Abstract summary: Cluster Contrast (CueCo) is a novel approach to unsupervised visual representation learning.<n>CueCo combines the strengths of contrastive learning and clustering methods.<n>Our method achieves 91.40% top-1 classification accuracy on CIFAR-10, 68.56% on CIFAR-100, and 78.65% on ImageNet-100.
- Score: 6.24302896438145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Cluster Contrast (CueCo), a novel approach to unsupervised visual representation learning that effectively combines the strengths of contrastive learning and clustering methods. Inspired by recent advancements, CueCo is designed to simultaneously scatter and align feature representations within the feature space. This method utilizes two neural networks, a query and a key, where the key network is updated through a slow-moving average of the query outputs. CueCo employs a contrastive loss to push dissimilar features apart, enhancing inter-class separation, and a clustering objective to pull together features of the same cluster, promoting intra-class compactness. Our method achieves 91.40% top-1 classification accuracy on CIFAR-10, 68.56% on CIFAR-100, and 78.65% on ImageNet-100 using linear evaluation with a ResNet-18 backbone. By integrating contrastive learning with clustering, CueCo sets a new direction for advancing unsupervised visual representation learning.
Related papers
- End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
We propose a novel intent learning method termed underlineELCRec.
It unifies behavior representation learning into an underlineEnd-to-end underlineLearnable underlineClustering framework.
We deploy this method on the industrial recommendation system with 130 million page views and achieve promising results.
arXiv Detail & Related papers (2024-01-11T15:22:55Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Network for
Efficient Feature Matching [15.620335576962475]
ClusterGNN is an attentional GNN architecture which operates on clusters for learning the feature matching task.
Our approach yields a 59.7% reduction in runtime and 58.4% reduction in memory consumption for dense detection.
arXiv Detail & Related papers (2022-04-25T14:43:15Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
arXiv Detail & Related papers (2021-09-26T22:18:15Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Information Maximization Clustering via Multi-View Self-Labelling [9.947717243638289]
We propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations.
This is achieved by integrating a discrete representation into the self-supervised paradigm through a net.
Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively.
arXiv Detail & Related papers (2021-03-12T16:04:41Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - Consensus Clustering With Unsupervised Representation Learning [4.164845768197489]
We study the clustering ability of Bootstrap Your Own Latent (BYOL) and observe that features learnt using BYOL may not be optimal for clustering.
We propose a novel consensus clustering based loss function, and train BYOL with the proposed loss in an end-to-end way that improves the clustering ability and outperforms similar clustering based methods.
arXiv Detail & Related papers (2020-10-03T01:16:46Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.