論文の概要: Cross-World Assumption and Refining Prediction Intervals for Individual Treatment Effects
- arxiv url: http://arxiv.org/abs/2507.12581v1
- Date: Wed, 16 Jul 2025 18:58:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.250227
- Title: Cross-World Assumption and Refining Prediction Intervals for Individual Treatment Effects
- Title(参考訳): 個別処理効果のクロスワールド・アセスメントと精製予測間隔
- Authors: Juraj Bodik, Yaxuan Huang, Bin Yu,
- Abstract要約: 高い意思決定のためには、個々の治療効果の推定には有効な予測間隔が伴わなければならない。
高い意思決定のためには、個々の治療効果の推定には有効な予測間隔が伴わなければならない。
- 参考スコア(独自算出の注目度): 6.083038976289835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While average treatment effects (ATE) and conditional average treatment effects (CATE) provide valuable population- and subgroup-level summaries, they fail to capture uncertainty at the individual level. For high-stakes decision-making, individual treatment effect (ITE) estimates must be accompanied by valid prediction intervals that reflect heterogeneity and unit-specific uncertainty. However, the fundamental unidentifiability of ITEs limits the ability to derive precise and reliable individual-level uncertainty estimates. To address this challenge, we investigate the role of a cross-world correlation parameter, $ \rho(x) = cor(Y(1), Y(0) | X = x) $, which describes the dependence between potential outcomes, given covariates, in the Neyman-Rubin super-population model with i.i.d. units. Although $ \rho $ is fundamentally unidentifiable, we argue that in most real-world applications, it is possible to impose reasonable and interpretable bounds informed by domain-expert knowledge. Given $\rho$, we design prediction intervals for ITE, achieving more stable and accurate coverage with substantially shorter widths; often less than 1/3 of those from competing methods. The resulting intervals satisfy coverage guarantees $P\big(Y(1) - Y(0) \in C_{ITE}(X)\big) \geq 1 - \alpha$ and are asymptotically optimal under Gaussian assumptions. We provide strong theoretical and empirical arguments that cross-world assumptions can make individual uncertainty quantification both practically informative and statistically valid.
- Abstract(参考訳): 平均治療効果(ATE)と条件付き平均治療効果(CATE)は、貴重な集団レベルとサブグループレベルのサマリーを提供するが、個々のレベルでの不確実性を捉えることはできない。
高い意思決定のためには、個別処理効果(ITE)推定は、不均一性と単位固有の不確実性を反映した有効な予測間隔を伴わなければならない。
しかし、ITTの基本的な不確定性は、正確で信頼性の高い個人レベルの不確実性推定を導出する能力を制限する。
この課題に対処するために、Nyman-Rubinスーパーポピュレーションモデルにおいて、与えられた共変量を含む潜在的な結果間の依存性を記述する、$ \rho(x) = cor(Y(1), Y(0) | X = x) $ というクロスワールド相関パラメータの役割について検討する。
$ \rho $ は基本的には識別できないが、ほとんどの実世界のアプリケーションでは、ドメインエキスパートの知識によって伝達される合理的で解釈可能な境界を課すことは可能であると論じる。
ITE の予測間隔は$$$\rho$ で、より安定で正確なカバレッジを実現し、非常に短い幅で、しばしば競合するメソッドの 1/3 以下である。
P\big(Y(1) - Y(0) \in C_{ITE}(X)\big) \geq 1 - \alpha$ はガウス的仮定の下で漸近的に最適である。
我々は、クロスワールドな仮定が個々の不確実性定量化を実用的に情報的かつ統計的に有効にできるという強い理論的および実証的な議論を提供する。
関連論文リスト
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COINは、統計的に有効な閾値を校正し、質問毎に1つの生成された回答をフィルタリングする不確実性保護選択フレームワークである。
COINはキャリブレーションセット上で経験的誤差率を推定し、信頼区間法を適用して真誤差率に高い確率上界を確立する。
リスク管理におけるCOINの堅牢性,許容回答を維持するための強いテストタイムパワー,キャリブレーションデータによる予測効率を実証する。
論文 参考訳(メタデータ) (2025-06-25T07:04:49Z) - Regression-Based Estimation of Causal Effects in the Presence of Selection Bias and Confounding [52.1068936424622]
治療が介入によって設定された場合、対象変数$Y$に対して、予測因果効果$E[Y|do(X)]$を推定する問題を考える。
選択バイアスや欠点のない設定では、$E[Y|do(X)] = E[Y|X]$ となる。
選択バイアスとコンバウンディングの両方を組み込んだフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-26T13:43:37Z) - Accounting for Missing Covariates in Heterogeneous Treatment Estimation [17.09751619857397]
生態学的推論に基づく新しい部分的識別戦略を導入する。
私たちのフレームワークは、他の方法では不可能であるよりもずっと厳密な境界を生成できることを示します。
論文 参考訳(メタデータ) (2024-10-21T05:47:07Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
データから因果関係を抽出することは、科学的発見、治療介入、伝達学習における根本的な問題である。
本稿では,複数の環境における回帰モデルにおける非パラメトリック不変性と因果学習に対処するアルゴリズムを提案する。
提案したFocused Adrial Invariant Regularizationフレームワークは、逆検定により回帰モデルを予測不変解へ向ける革新的なミニマックス最適化手法を利用する。
論文 参考訳(メタデータ) (2024-05-07T23:37:40Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
我々は、予測の不確実性の下で公正な機械学習(ML)を研究し、信頼性と信頼性のある意思決定を可能にする。
本研究は,(1)類似した結果の異なる集団に対するカバー率が近いこと,(2)人口全体のカバー率が一定水準にあること,の2つの特性を達成することを目的としたカバーの平等機会(EOC)を提案する。
論文 参考訳(メタデータ) (2023-11-03T21:19:59Z) - Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects [1.9253333342733674]
多くの因果推定値は、潜在的な結果間の観測不能な関節分布に依存するため、部分的にしか識別できない。
本研究では,部分的同定された推定値の広いクラスに対して,統一的かつモデルに依存しない推論手法を提案する。
論文 参考訳(メタデータ) (2023-10-12T08:17:30Z) - Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models [4.675899216825188]
本稿では,間隔化同時信頼区間という,同時信頼区間の概念を提案する。
我々の区間は、区間の上と下の境界の一部が 0 に切り替わるという意味でスパースである。
提案手法は様々な選択手順と組み合わせることができるため,不確実性を比較するのに最適である。
論文 参考訳(メタデータ) (2023-07-14T18:37:57Z) - Robust and Agnostic Learning of Conditional Distributional Treatment Effects [44.31792000298105]
問題クラスに対する条件付きDTE(Conditional DTE)を学習するための、新しい堅牢でモデルに依存しない方法論を提供する。
本手法は回帰モデルクラスにCDTEの最良のプロジェクションを提供することができるため,モデルに依存しない。
シミュレーションにおける提案手法の挙動と,富に対する401(k)の適格性の影響を事例として検討した。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - Counterfactual inference in sequential experiments [17.817769460838665]
複数の単位に複数の時間点に対する処理を割り当てるシーケンシャルな設計実験のアフタースタディ統計的推測を考察する。
我々のゴールは、最小限のスケールで、カウンターファクト平均に対する推論保証を提供することです。
我々は,いくつかのシミュレーションと,モバイル医療臨床試験HeartStepsのデータを含むケーススタディを通して,我々の理論を解説する。
論文 参考訳(メタデータ) (2022-02-14T17:24:27Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
本研究では,雑音情報に基づく機械学習モデルの公平性の測定問題について検討する。
本稿では, 精度の高い公平性評価が可能な弱い条件を特徴付けることを目的とした理論的解析を行う。
論文 参考訳(メタデータ) (2021-05-20T18:36:28Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
そこで本研究では,反ファクトや個々の治療効果について,信頼できる間隔を推定できる共形推論に基づく手法を提案する。
既存の手法は、単純なモデルであってもかなりのカバレッジの欠陥に悩まされる。
論文 参考訳(メタデータ) (2020-06-11T01:03:32Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。