論文の概要: A Privacy-Preserving Semantic-Segmentation Method Using Domain-Adaptation Technique
- arxiv url: http://arxiv.org/abs/2507.12730v1
- Date: Thu, 17 Jul 2025 02:14:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.321023
- Title: A Privacy-Preserving Semantic-Segmentation Method Using Domain-Adaptation Technique
- Title(参考訳): ドメイン適応手法を用いたプライバシー保護セマンティックセグメンテーション手法
- Authors: Homare Sueyoshi, Kiyoshi Nishikawa, Hitoshi Kiya,
- Abstract要約: モデルトレーニングやテスト画像に使用される画像に知覚暗号化を適用するためのプライバシー保護セマンティックセグメンテーション手法を提案する。
この手法は、暗号化のないモデルとほぼ同等の精度を提供する。
- 参考スコア(独自算出の注目度): 5.311735227179715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a privacy-preserving semantic-segmentation method for applying perceptual encryption to images used for model training in addition to test images. This method also provides almost the same accuracy as models without any encryption. The above performance is achieved using a domain-adaptation technique on the embedding structure of the Vision Transformer (ViT). The effectiveness of the proposed method was experimentally confirmed in terms of the accuracy of semantic segmentation when using a powerful semantic-segmentation model with ViT called Segmentation Transformer.
- Abstract(参考訳): 本稿では,テスト画像に加えて,モデルトレーニングに使用される画像に知覚暗号化を適用するためのプライバシー保護セマンティックセグメンテーション手法を提案する。
この手法は、暗号化のないモデルとほぼ同等の精度を提供する。
上記の性能は、ViT(Vision Transformer)の埋め込み構造に対するドメイン適応手法を用いて達成される。
セグメンテーション変換器 (Segmentation Transformer) を用いた強力なセグメンテーションモデルを用いて, セグメンテーションの精度の観点から, 提案手法の有効性を実験的に検証した。
関連論文リスト
- Efficient Fine-Tuning with Domain Adaptation for Privacy-Preserving
Vision Transformer [6.476298483207895]
視覚変換器(ViT)を用いたプライバシー保護型ディープニューラルネットワーク(DNN)の新しい手法を提案する。
本手法では, モデルトレーニングや視覚的に保護された画像によるテストだけでなく, 暗号化画像の使用による性能劣化を回避できる。
ドメイン適応法は、暗号化された画像でViTを効率よく微調整するために用いられる。
論文 参考訳(メタデータ) (2024-01-10T12:46:31Z) - Diffusion-based Image Translation with Label Guidance for Domain
Adaptive Semantic Segmentation [35.44771460784343]
ターゲットモデル学習のためのソースドメインからターゲットドメインへの変換は、ドメイン適応セマンティックセグメンテーション(DASS)において最も一般的な戦略の1つである。
既存の方法は、元の画像と翻訳された画像の間の意味的に一貫性のある局所的な詳細を保存するのに依然として苦労している。
本稿では、画像翻訳中にソースドメインラベルを明示的なガイダンスとして用いることにより、この問題に対処する革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-23T18:01:01Z) - ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts [9.298299024529333]
本稿では,解釈可能なセマンティックイメージセグメンテーションの新しいモデルであるProtoSegを紹介する。
ベースライン法に匹敵する精度を達成するため,プロトタイプ部品の機構を適応させる。
ProtoSegは標準的なセグメンテーションモデルとは対照的にセグメンテーションの概念を発見する。
論文 参考訳(メタデータ) (2023-01-28T19:14:32Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - Semantic Image Synthesis via Diffusion Models [174.24523061460704]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に事実上のGANベースのアプローチに従っている。
意味画像合成のためのDDPMに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Privacy-Preserving Image Classification Using Vision Transformer [16.679394807198]
暗号化画像と視覚変換器(ViT)を組み合わせたプライバシー保護画像分類手法を提案する。
ViTは画像パッチにパッチ埋め込みと位置埋め込みを利用するため、このアーキテクチャはブロックワイド画像変換の影響を低減することができる。
実験では,様々な攻撃に対する分類精度とロバスト性の観点から,プライバシー保護画像分類の手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T12:51:48Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
クロスドメイン適応における特徴アライメントのためのコントラスト学習を導入する。
提案手法は、ドメイン適応のための最先端手法を一貫して上回る。
Cityscapesデータセットで60.2% mIoUを達成した。
論文 参考訳(メタデータ) (2022-04-18T16:50:46Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
セマンティックセグメンテーションのためのトランスフォーマーモデルであるSegmenterを紹介します。
最近のViT(Vision Transformer)上に構築し,セマンティックセグメンテーションに拡張する。
これは、挑戦的なADE20Kデータセット上でのアートの状態を上回り、Pascal ContextとCityscapesでオンパーを実行する。
論文 参考訳(メタデータ) (2021-05-12T13:01:44Z) - Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation [56.91850268635183]
本稿では,実用的かつ高精度な意味セグメンテーションのためのドメイン適応手法を提案する。
私たちは標準データ拡張技術である$-$フォトメトリックノイズ、フリップとスケーリング$-$を採用し、セマンティック予測の一貫性を保証する。
適応後の最先端セグメンテーション精度を大幅に改善し、バックボーンアーキテクチャと適応シナリオの異なる選択に整合性を持たせる。
論文 参考訳(メタデータ) (2021-04-30T21:32:40Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
本稿では,セマンティックセグメンテーションの解法としてSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
論文 参考訳(メタデータ) (2020-02-26T12:32:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。