Improving Diagnostic Accuracy of Pigmented Skin Lesions With CNNs: an Application on the DermaMNIST Dataset
- URL: http://arxiv.org/abs/2507.12961v1
- Date: Thu, 17 Jul 2025 10:00:07 GMT
- Title: Improving Diagnostic Accuracy of Pigmented Skin Lesions With CNNs: an Application on the DermaMNIST Dataset
- Authors: Nerma Kadric, Amila Akagic, Medina Kapo,
- Abstract summary: This study assesses ResNet-50 and EfficientNetV2L models for multi-class classification using DermaMNIST.<n>This study suggests that convolutional neural networks (CNNs) can drive progress in biomedical image analysis, significantly enhancing diagnostic accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pigmented skin lesions represent localized areas of increased melanin and can indicate serious conditions like melanoma, a major contributor to skin cancer mortality. The MedMNIST v2 dataset, inspired by MNIST, was recently introduced to advance research in biomedical imaging and includes DermaMNIST, a dataset for classifying pigmented lesions based on the HAM10000 dataset. This study assesses ResNet-50 and EfficientNetV2L models for multi-class classification using DermaMNIST, employing transfer learning and various layer configurations. One configuration achieves results that match or surpass existing methods. This study suggests that convolutional neural networks (CNNs) can drive progress in biomedical image analysis, significantly enhancing diagnostic accuracy.
Related papers
- Bluish Veil Detection and Lesion Classification using Custom Deep Learnable Layers with Explainable Artificial Intelligence (XAI) [1.0136215038345013]
Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally.<n>The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited.<n>This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm based on color threshold techniques on lesion patches and color palettes.<n>A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead
arXiv Detail & Related papers (2025-07-10T06:12:23Z) - Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography [39.58317527488534]
This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system.<n>Zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe.<n>These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging.
arXiv Detail & Related papers (2025-06-16T20:14:37Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - A Web-based Mpox Skin Lesion Detection System Using State-of-the-art
Deep Learning Models Considering Racial Diversity [1.846958522363092]
'Mpox', formerly known as 'Monkeypox', has become a significant public health concern and has spread to over 110 countries globally.
Computer-aided screening tools have been proven valuable in cases where Polymerase Chain Reaction (PCR) based diagnosis is not immediately available.
Deep learning methods are powerful in learning complex data representations, but their efficacy largely depends on adequate training data.
arXiv Detail & Related papers (2023-06-25T08:23:44Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Evaluation of Big Data based CNN Models in Classification of Skin
Lesions with Melanoma [7.919213739992465]
The architecture is based on convolu-tional neural networks and it is evaluated using new CNN models as well as re-trained modification of pre-existing CNN models were used.
The best performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%.
arXiv Detail & Related papers (2020-07-10T15:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.