論文の概要: Leveraging Asynchronous Cross-border Market Data for Improved Day-Ahead Electricity Price Forecasting in European Markets
- arxiv url: http://arxiv.org/abs/2507.13250v1
- Date: Thu, 17 Jul 2025 15:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.566947
- Title: Leveraging Asynchronous Cross-border Market Data for Improved Day-Ahead Electricity Price Forecasting in European Markets
- Title(参考訳): 欧州市場における日頭電力価格予測改善のための非同期市場データの活用
- Authors: Maria Margarida Mascarenhas, Jilles De Blauwe, Mikael Amelin, Hussain Kazmi,
- Abstract要約: ベルギー(BE)とスウェーデンの入札地域では,予測精度が22%,9%向上した。
この改善は、一般および極端な市場条件の両方に当てはまる。
頻繁なモデル再校正は最大精度には必要だが、かなりの計算コストがかかる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate short-term electricity price forecasting is crucial for strategically scheduling demand and generation bids in day-ahead markets. While data-driven techniques have shown considerable prowess in achieving high forecast accuracy in recent years, they rely heavily on the quality of input covariates. In this paper, we investigate whether asynchronously published prices as a result of differing gate closure times (GCTs) in some bidding zones can improve forecasting accuracy in other markets with later GCTs. Using a state-of-the-art ensemble of models, we show significant improvements of 22% and 9% in forecast accuracy in the Belgian (BE) and Swedish bidding zones (SE3) respectively, when including price data from interconnected markets with earlier GCT (Germany-Luxembourg, Austria, and Switzerland). This improvement holds for both general as well as extreme market conditions. Our analysis also yields further important insights: frequent model recalibration is necessary for maximum accuracy but comes at substantial additional computational costs, and using data from more markets does not always lead to better performance - a fact we delve deeper into with interpretability analysis of the forecast models. Overall, these findings provide valuable guidance for market participants and decision-makers aiming to optimize bidding strategies within increasingly interconnected and volatile European energy markets.
- Abstract(参考訳): 正確な短期的な電力価格予測は、日頭市場での需要と発電入札を戦略的にスケジューリングするために不可欠である。
近年、データ駆動技術は高い予測精度を達成する上で大きな進歩を見せているが、それらは入力共変量の品質に大きく依存している。
本稿では,一部の入札ゾーンにおけるゲート閉鎖時間(GCT)の相違による非同期公開価格が,後続のGCTの他市場における予測精度を向上させることができるかどうかを検討する。
従来のGCT(ドイツ・ルクセンブルク、オーストリア、スイス)との相互接続市場からの価格データを含めると、ベルギー(BE)とスウェーデンの入札ゾーン(SE3)の予測精度は22%と9%の大幅な改善が見られた。
この改善は、一般および極端な市場条件の両方に当てはまる。
頻繁なモデルリカバリは、最大限の精度で必要だが、かなりの計算コストがかかり、より多くの市場からのデータを使用すると、パフォーマンスが向上するとは限らない。
全体として、これらの調査結果は、欧州のエネルギー市場が相互に連携し、不安定になってきている中での入札戦略の最適化を目的とした、市場参加者や意思決定者にとって貴重なガイダンスを提供する。
関連論文リスト
- ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market [45.62331048595689]
本稿では,ドイツ支配予備市場を中心に,従量制サービス市場における入札価格の予測手法を提案する。
サポートベクトル回帰、決定木、k-Nearest Neighborsなど、さまざまな機械学習モデルを評価し、ベンチマークモデルと比較する。
分析の結果,提案手法はベースラインモデルと比較して27.43%から37.31%に改善することが示された。
論文 参考訳(メタデータ) (2025-03-21T15:21:43Z) - Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
再生可能エネルギーの電気市場への統合は 価格安定に重大な課題をもたらします
本研究では, Conformal Prediction (CP) 技術を用いた確率的価格予測の強化について検討した。
本稿では,量子レグレッションモデルの効率と時系列適応CP手法の強靭なカバレッジ特性を組み合わせたアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2025-02-07T13:57:47Z) - Cross-border Commodity Pricing Strategy Optimization via Mixed Neural Network for Time Series Analysis [46.26988706979189]
クロスボーダー商品の価格設定は、企業の競争力と市場シェアを決定する。
時系列データは商品価格において非常に重要であり、市場のダイナミクスやトレンドを明らかにすることができる。
本稿では,ハイブリッドニューラルネットワークモデルCNN-BiGRU-SSAに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T03:59:52Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices [0.0]
本研究は、ドイツの日内取引で取引された電力価格のベイズ予測を初めて示したものである。
ターゲット変数はIDFull価格指数であり、予測は後続の予測分布として与えられる。
絶対誤差で平均5.9,%の減少を含む点測度と確率スコアの大幅な改善を観察する。
論文 参考訳(メタデータ) (2024-03-08T16:51:27Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
この研究は、広く研究されている日頭市場で成功した様々な価格予測手法をアイルランドのバランス市場に適用する。
異なるトレーニングサイズの影響を調査するフレームワークを用いて,統計モデル,機械学習モデル,ディープラーニングモデルを比較した。
大規模な数値的な研究により、日頭市場における良いパフォーマンスのモデルはバランスの取れないモデルではうまく機能しないことが示された。
論文 参考訳(メタデータ) (2024-02-09T15:18:00Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
本研究では,日内市場におけるリターン分布の位置,形状,スケールパラメータのモデル化手法を提案する。
風と太陽の予測と、その日内更新、停電、価格情報、および、メリットの順序を形作るための新しい尺度について検討する。
ボラティリティは、利益秩序体制、納期、国境を越えた注文書の閉鎖によってもたらされる。
論文 参考訳(メタデータ) (2022-11-23T15:08:50Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。