論文の概要: Enhanced image classification via hybridizing quantum dynamics with classical neural networks
- arxiv url: http://arxiv.org/abs/2507.13587v1
- Date: Fri, 18 Jul 2025 00:15:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.158926
- Title: Enhanced image classification via hybridizing quantum dynamics with classical neural networks
- Title(参考訳): 古典的ニューラルネットワークを用いた量子力学のハイブリッド化による画像分類の強化
- Authors: Ruiyang Zhou, Saubhik Sarkar, Sougato Bose, Abolfazl Bayat,
- Abstract要約: 本稿では,古典的ニューラルネットワークと量子多体系の非平衡力学を組み合わせたハイブリッドプロトコルを提案する。
このアーキテクチャは、古典的なニューラルネットワークを活用して、高次元データを効率的に処理し、量子多体システム上で効果的にエンコードする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of quantum computing and machine learning has emerged as a promising frontier in computational science. We present a hybrid protocol which combines classical neural networks with non-equilibrium dynamics of a quantum many-body system for image classification. This architecture leverages classical neural networks to efficiently process high-dimensional data and encode it effectively on a quantum many-body system, overcoming a challenging task towards scaled up quantum computation. The quantum module further capitalizes on the discriminative properties of many-body quantum dynamics to enhance classification accuracy. By mapping images from distinct classes to nearly-orthogonal quantum states, the system maximizes separability in the Hilbert space, enabling robust classification. We evaluate the performance of our model on several benchmark datasets with various number of features and classes. Moreover, we demonstrate the key role of the quantum module in achieving high classification accuracy which cannot be accomplished by the classical neural network alone. This showcases the potential of our hybrid protocol for achieving practical quantum advantage and paves the way for future advancements in quantum-enhanced computational techniques.
- Abstract(参考訳): 量子コンピューティングと機械学習の統合は、計算科学の有望なフロンティアとして登場した。
本稿では,古典的ニューラルネットワークと量子多体系の非平衡力学を組み合わせたハイブリッドプロトコルを提案する。
このアーキテクチャは、古典的なニューラルネットワークを活用して、高次元データを効率的に処理し、量子多体システム上で効果的にエンコードする。
量子モジュールは、分類精度を高めるために、多体量子力学の識別特性をさらに活用する。
異なるクラスからの画像をほぼ直交の量子状態にマッピングすることにより、システムはヒルベルト空間における分離性を最大化し、ロバストな分類を可能にする。
様々な特徴とクラスを持つベンチマークデータセットを用いて,本モデルの性能評価を行った。
さらに、古典的ニューラルネットワークだけでは達成できない高い分類精度を達成する上で、量子モジュールが果たす重要な役割を実証する。
これは、実用的な量子優位性を達成するための我々のハイブリッドプロトコルの可能性を示し、量子強化計算技術における将来の進歩の道を開くものである。
関連論文リスト
- Single-Qudit Quantum Neural Networks for Multiclass Classification [0.0]
本稿では,マルチクラス分類のための単一量子ニューラルネットワークを提案する。
我々の設計では$d$次元のユニタリ演算子を使用し、$d$はクラスの数に対応する。
我々は,MNISTデータセットとEMNISTデータセットを用いたモデルの評価を行い,競合精度を実証した。
論文 参考訳(メタデータ) (2025-03-12T11:12:05Z) - A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification [1.458255172453241]
本稿では,量子回路分割に基づく分散ハイブリッド量子畳み込みニューラルネットワークを提案する。
量子回路分割に基づく分散技術を統合することにより、8量子ビットQCNNは5量子ビットのみを用いて再構成できる。
本モデルは,2次・複数分類タスクの3つのデータセットにまたがる高い性能を実現する。
論文 参考訳(メタデータ) (2025-01-07T11:58:40Z) - Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。