Tri-Learn Graph Fusion Network for Attributed Graph Clustering
- URL: http://arxiv.org/abs/2507.13620v2
- Date: Tue, 22 Jul 2025 08:44:20 GMT
- Title: Tri-Learn Graph Fusion Network for Attributed Graph Clustering
- Authors: Binxiong Li, Xu Xiang, Xue Li, Binyu Zhao, Heyang Gao, Qinyu Zhao,
- Abstract summary: This study proposes a novel deep clustering framework that comprises GCN, Autoencoder (AE), and Graph Transformer.<n>The framework enhances the differentiation and consistency of global and local information through a unique tri-learning mechanism and feature fusion strategy.<n>It surpasses many state-of-the-art methods, achieving an accuracy improvement of approximately 0.87% on the ACM dataset, 14.14 % on the Reuters dataset, and 7.58 % on the USPS dataset.
- Score: 5.2044462428583875
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, models based on Graph Convolutional Networks (GCN) have made significant strides in the field of graph data analysis. However, challenges such as over-smoothing and over-compression remain when handling large-scale and complex graph datasets, leading to a decline in clustering quality. Although the Graph Transformer architecture has mitigated some of these issues, its performance is still limited when processing heterogeneous graph data. To address these challenges, this study proposes a novel deep clustering framework that comprising GCN, Autoencoder (AE), and Graph Transformer, termed the Tri-Learn Graph Fusion Network (Tri-GFN). This framework enhances the differentiation and consistency of global and local information through a unique tri-learning mechanism and feature fusion enhancement strategy. The framework integrates GCN, AE, and Graph Transformer modules. These components are meticulously fused by a triple-channel enhancement module, which maximizes the use of both node attributes and topological structures, ensuring robust clustering representation. The tri-learning mechanism allows mutual learning among these modules, while the feature fusion strategy enables the model to capture complex relationships, yielding highly discriminative representations for graph clustering. It surpasses many state-of-the-art methods, achieving an accuracy improvement of approximately 0.87% on the ACM dataset, 14.14 % on the Reuters dataset, and 7.58 % on the USPS dataset. Due to its outstanding performance on the Reuters dataset, Tri-GFN can be applied to automatic news classification, topic retrieval, and related fields.
Related papers
- GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network [6.738515963971333]
We propose a novel deep graph clustering model, GCL-GCN, to address the limitations of existing models in capturing local dependencies and complex structures.<n>GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships.<n>In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix.
arXiv Detail & Related papers (2025-07-25T09:25:55Z) - GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
We propose a novel Multi-Relation Graph- Kernel Strengthen Network for Graph-Level Clustering (MGSN)<n>MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs.<n>A relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views.
arXiv Detail & Related papers (2025-04-02T11:17:15Z) - RDSA: A Robust Deep Graph Clustering Framework via Dual Soft Assignment [18.614842530666834]
We introduce a new framework called the Robust Deep Graph Clustering Framework via Dual Soft Assignment (RDSA)<n>RDSA consists of three key components: (i) a node embedding module that effectively integrates the graph's topological features and node attributes; (ii) a structure-based soft assignment module that improves graph modularity by utilizing an affinity matrix for node assignments; and (iii) a node-based soft assignment module that identifies community landmarks and refines node assignments to enhance the model's robustness.<n>We assess RDSA on various real-world datasets, demonstrating its superior performance relative to existing state-of-the-
arXiv Detail & Related papers (2024-10-29T05:18:34Z) - Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method [8.989218350080844]
This study introduces an innovative method known as the Graph Transformer Auto-Encoder for Graph Clustering (GTAGC)
By melding the Graph Auto-Encoder with the Graph Transformer, GTAGC is adept at capturing global dependencies between nodes.
The architecture of GTAGC encompasses graph embedding, integration of the Graph Transformer within the autoencoder structure, and a clustering component.
arXiv Detail & Related papers (2023-06-20T06:04:03Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.