Automated Interpretation of Non-Destructive Evaluation Contour Maps Using Large Language Models for Bridge Condition Assessment
- URL: http://arxiv.org/abs/2507.14107v1
- Date: Fri, 18 Jul 2025 17:39:03 GMT
- Title: Automated Interpretation of Non-Destructive Evaluation Contour Maps Using Large Language Models for Bridge Condition Assessment
- Authors: Viraj Nishesh Darji, Callie C. Liao, Duoduo Liao,
- Abstract summary: Bridge maintenance and safety are essential for transportation authorities.<n>Non-Destructive Evaluation (NDE) techniques are critical to assessing structural integrity.<n>Recent advancements in Large Language Models (LLMs) offer new ways to automate and improve this analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bridge maintenance and safety are essential for transportation authorities, and Non-Destructive Evaluation (NDE) techniques are critical to assessing structural integrity. However, interpreting NDE data can be time-consuming and requires expertise, potentially delaying decision-making. Recent advancements in Large Language Models (LLMs) offer new ways to automate and improve this analysis. This pilot study introduces a holistic assessment of LLM capabilities for interpreting NDE contour maps and demonstrates the effectiveness of LLMs in providing detailed bridge condition analyses. It establishes a framework for integrating LLMs into bridge inspection workflows, indicating that LLM-assisted analysis can enhance efficiency without compromising accuracy. In this study, several LLMs are explored with prompts specifically designed to enhance the quality of image descriptions, which are applied to interpret five different NDE contour maps obtained through technologies for assessing bridge conditions. Each LLM model is evaluated based on its ability to produce detailed descriptions, identify defects, provide actionable recommendations, and demonstrate overall accuracy. The research indicates that four of the nine models provide better image descriptions, effectively covering a wide range of topics related to the bridge's condition. The outputs from these four models are summarized using five different LLMs to form a comprehensive overview of the bridge. Notably, LLMs ChatGPT-4 and Claude 3.5 Sonnet generate more effective summaries. The findings suggest that LLMs have the potential to significantly improve efficiency and accuracy. This pilot study presents an innovative approach that leverages LLMs for image captioning in parallel and summarization, enabling faster decision-making in bridge maintenance and enhancing infrastructure management and safety assessments.
Related papers
- Prompt to Protection: A Comparative Study of Multimodal LLMs in Construction Hazard Recognition [0.0]
This study conducts a comparative evaluation of five state-of-the-art large language models (LLMs)<n>Each model was tested under three prompting strategies: zero-shot, few-shot, and chain-of-thought (CoT)<n>Results reveal that CoT prompting significantly influenced performance, with CoT prompting consistently producing higher accuracy across models.
arXiv Detail & Related papers (2025-06-09T05:22:35Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - The Lighthouse of Language: Enhancing LLM Agents via Critique-Guided Improvement [49.687224320842105]
Large language models (LLMs) have recently transformed from text-based assistants to autonomous agents capable of planning, reasoning, and iteratively improving their actions.<n>In this work, we introduce Critique-Guided Improvement (CGI), a novel two-player framework, comprising an actor model that explores an environment and a critic model that generates detailed nature language feedback.
arXiv Detail & Related papers (2025-03-20T10:42:33Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.<n>It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - LLM In-Context Recall is Prompt Dependent [0.0]
A model's ability to do this significantly influences its practical efficacy and dependability in real-world applications.
This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data.
arXiv Detail & Related papers (2024-04-13T01:13:59Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy [48.29181662640212]
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models.
We consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs.
arXiv Detail & Related papers (2024-02-20T08:41:23Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.