Prompt to Protection: A Comparative Study of Multimodal LLMs in Construction Hazard Recognition
- URL: http://arxiv.org/abs/2506.07436v1
- Date: Mon, 09 Jun 2025 05:22:35 GMT
- Title: Prompt to Protection: A Comparative Study of Multimodal LLMs in Construction Hazard Recognition
- Authors: Nishi Chaudhary, S M Jamil Uddin, Sathvik Sharath Chandra, Anto Ovid, Alex Albert,
- Abstract summary: This study conducts a comparative evaluation of five state-of-the-art large language models (LLMs)<n>Each model was tested under three prompting strategies: zero-shot, few-shot, and chain-of-thought (CoT)<n>Results reveal that CoT prompting significantly influenced performance, with CoT prompting consistently producing higher accuracy across models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent emergence of multimodal large language models (LLMs) has introduced new opportunities for improving visual hazard recognition on construction sites. Unlike traditional computer vision models that rely on domain-specific training and extensive datasets, modern LLMs can interpret and describe complex visual scenes using simple natural language prompts. However, despite growing interest in their applications, there has been limited investigation into how different LLMs perform in safety-critical visual tasks within the construction domain. To address this gap, this study conducts a comparative evaluation of five state-of-the-art LLMs: Claude-3 Opus, GPT-4.5, GPT-4o, GPT-o3, and Gemini 2.0 Pro, to assess their ability to identify potential hazards from real-world construction images. Each model was tested under three prompting strategies: zero-shot, few-shot, and chain-of-thought (CoT). Zero-shot prompting involved minimal instruction, few-shot incorporated basic safety context and a hazard source mnemonic, and CoT provided step-by-step reasoning examples to scaffold model thinking. Quantitative analysis was performed using precision, recall, and F1-score metrics across all conditions. Results reveal that prompting strategy significantly influenced performance, with CoT prompting consistently producing higher accuracy across models. Additionally, LLM performance varied under different conditions, with GPT-4.5 and GPT-o3 outperforming others in most settings. The findings also demonstrate the critical role of prompt design in enhancing the accuracy and consistency of multimodal LLMs for construction safety applications. This study offers actionable insights into the integration of prompt engineering and LLMs for practical hazard recognition, contributing to the development of more reliable AI-assisted safety systems.
Related papers
- Automated Interpretation of Non-Destructive Evaluation Contour Maps Using Large Language Models for Bridge Condition Assessment [0.0]
Bridge maintenance and safety are essential for transportation authorities.<n>Non-Destructive Evaluation (NDE) techniques are critical to assessing structural integrity.<n>Recent advancements in Large Language Models (LLMs) offer new ways to automate and improve this analysis.
arXiv Detail & Related papers (2025-07-18T17:39:03Z) - Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation [75.26829371493189]
Large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking.<n>Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability.<n>We propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework.
arXiv Detail & Related papers (2025-06-03T09:01:08Z) - SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - A Looming Replication Crisis in Evaluating Behavior in Language Models? Evidence and Solutions [15.350973327319418]
Large language models (LLMs) are increasingly integrated into a wide range of everyday applications.
This raises concerns about the replicability and generalizability of insights gained from research on LLM behavior.
We tested GPT-3.5, GPT-4o, Gemini 1.5 Pro, Claude 3 Opus, Llama 3-8B, and Llama 3-70B, on the chain-of-thought, EmotionPrompting, ExpertPrompting, Sandbagging, as well as Re-Reading prompt engineering techniques.
arXiv Detail & Related papers (2024-09-30T14:00:34Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
Large Language Models (LLMs) have revolutionized natural language processing, but their robustness against adversarial attacks remains a critical concern.
We present a novel white-box style attack approach that exposes vulnerabilities in leading open-source LLMs, including Llama, OPT, and T5.
arXiv Detail & Related papers (2024-05-04T22:00:28Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - Can large language models explore in-context? [87.49311128190143]
We deploy Large Language Models as agents in simple multi-armed bandit environments.
We find that the models do not robustly engage in exploration without substantial interventions.
arXiv Detail & Related papers (2024-03-22T17:50:43Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
We introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes.
We conduct experiments on four prevalent Large Language Models (LLMs) across ten natural language understanding (NLU) datasets.
MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks.
arXiv Detail & Related papers (2023-08-10T05:10:17Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.