論文の概要: Toward Temporal Causal Representation Learning with Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2507.14126v1
- Date: Fri, 18 Jul 2025 17:55:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.385327
- Title: Toward Temporal Causal Representation Learning with Tensor Decomposition
- Title(参考訳): テンソル分解を用いた時間因果表現学習に向けて
- Authors: Jianhong Chen, Meng Zhao, Mostafa Reisi Gahrooei, Xubo Yue,
- Abstract要約: 本稿では,変換情報に基づく因果表現学習のモデル化に焦点をあてる。
本研究では,時間的因果表現学習と不規則なテンソル分解を統合した共同学習フレームワークCaRTeDを提案する。
我々の結果は、最先端不規則なテンソル分解の収束に関する理論的保証のギャップを埋める。
- 参考スコア(独自算出の注目度): 5.288554155235167
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Temporal causal representation learning is a powerful tool for uncovering complex patterns in observational studies, which are often represented as low-dimensional time series. However, in many real-world applications, data are high-dimensional with varying input lengths and naturally take the form of irregular tensors. To analyze such data, irregular tensor decomposition is critical for extracting meaningful clusters that capture essential information. In this paper, we focus on modeling causal representation learning based on the transformed information. First, we present a novel causal formulation for a set of latent clusters. We then propose CaRTeD, a joint learning framework that integrates temporal causal representation learning with irregular tensor decomposition. Notably, our framework provides a blueprint for downstream tasks using the learned tensor factors, such as modeling latent structures and extracting causal information, and offers a more flexible regularization design to enhance tensor decomposition. Theoretically, we show that our algorithm converges to a stationary point. More importantly, our results fill the gap in theoretical guarantees for the convergence of state-of-the-art irregular tensor decomposition. Experimental results on synthetic and real-world electronic health record (EHR) datasets (MIMIC-III), with extensive benchmarks from both phenotyping and network recovery perspectives, demonstrate that our proposed method outperforms state-of-the-art techniques and enhances the explainability of causal representations.
- Abstract(参考訳): 時間的因果表現学習は、しばしば低次元時系列として表される観察研究における複雑なパターンを明らかにする強力なツールである。
しかし、多くの実世界の応用において、データは様々な入力長を持つ高次元であり、自然に不規則テンソルの形を取る。
このようなデータを解析するためには、重要な情報を取得する意味のあるクラスターを抽出するために不規則なテンソル分解が重要である。
本稿では,変換情報に基づく因果表現学習のモデル化に焦点をあてる。
まず、潜伏クラスタの集合に対して、新しい因果関係の定式化を提案する。
次に,時間的因果表現学習と不規則なテンソル分解を統合した共同学習フレームワークCaRTeDを提案する。
特に,本フレームワークは,潜伏構造をモデル化し,因果情報を抽出するなど,学習されたテンソル要素を用いた下流タスクの青写真を提供し,テンソル分解を向上させるためのより柔軟な正規化設計を提供する。
理論的には、我々のアルゴリズムは定常点に収束する。
さらに重要なことに、我々の結果は、最先端の不規則テンソル分解の収束に関する理論的保証のギャップを埋める。
フェノタイピングとネットワークリカバリの両面から広範なベンチマークを行った人工的および実世界の電子健康記録(EHR)データセット(MIMIC-III)の実験結果から,提案手法が最先端技術より優れ,因果表現の説明可能性の向上を実証した。
関連論文リスト
- Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
低ランクテンソル分解(TD)は、マルチウェイデータ解析に有効なフレームワークを提供する。
従来のTD法は、CPやタッカー分解のような事前定義された構造的仮定に依存している。
本稿では,事前定義された構造的仮定や分布的仮定の必要性を排除したスコアベースモデルを提案する。
論文 参考訳(メタデータ) (2025-06-27T15:05:37Z) - Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization [49.158601255093416]
暗黙的神経表現のためのニューラルネットワークによりパラメータ化されたCPベースの低ランクテンソル関数を提案する。
滑らか性のために、ヤコビアンとハッチンソンのトレース推定器のスペクトルノルムに基づく正規化項を提案する。
提案した滑らか度正規化はSVDフリーであり、明示的な連鎖規則の導出を避ける。
論文 参考訳(メタデータ) (2025-06-27T11:23:10Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
遠方表現学習は、観測データ内の本質的要因を抽出する試みである。
我々は新しい視点と枠組みを導入し、クロスアテンションを持つ拡散モデルが強力な帰納バイアスとなることを示す。
これは、複雑な設計を必要とせず、クロスアテンションを持つ拡散モデルの強力な解離能力を明らかにする最初の研究である。
論文 参考訳(メタデータ) (2024-02-15T05:07:54Z) - Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
観測から純粋に表現を学習することは、予測モデルに有利な低次元のコンパクトな表現を学習する問題を懸念する。
本研究では,観測データからこのような表現を学習するための学習手法を開発した。
理論的および実験的に、学習された因果表現で訓練されたモデルは、敵の攻撃や分布シフトの下でより堅牢であることを示す。
論文 参考訳(メタデータ) (2023-10-21T02:18:35Z) - Provable Tensor Completion with Graph Information [49.08648842312456]
本稿では,動的グラフ正規化テンソル完備問題の解法として,新しいモデル,理論,アルゴリズムを提案する。
我々はテンソルの低ランクおよび類似度構造を同時に捉える包括的モデルを開発する。
理論の観点からは、提案したグラフの滑らか度正規化と重み付きテンソル核ノルムとの整合性を示す。
論文 参考訳(メタデータ) (2023-10-04T02:55:10Z) - SWoTTeD: An Extension of Tensor Decomposition to Temporal Phenotyping [0.0]
隠れ時間パターンを発見する新しい手法SWoTTeD(Sliding Window for Temporal Decomposition)を提案する。
我々は, 合成と実世界の両方のデータセットを用いて提案手法を検証し, パリ大病院のデータを用いた独自のユースケースを提案する。
その結果、SWoTTeDは最近の最先端テンソル分解モデルと同程度の精度で再現可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-02T13:42:11Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
論文 参考訳(メタデータ) (2022-02-17T00:38:35Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
テンソル完備化のために,低ランクかつスパースに拡張されたタッカー分解モデルを導入する。
我々のモデルはスパースコアテンソルを促進するためにスパース正規化項を持ち、テンソルデータ圧縮に有用である。
テンソルに出現する潜在的な周期性と固有相関特性を利用するので,本モデルでは様々な種類の実世界のデータセットを扱うことが可能である。
論文 参考訳(メタデータ) (2020-10-01T12:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。