論文の概要: Understanding Two-Layer Neural Networks with Smooth Activation Functions
- arxiv url: http://arxiv.org/abs/2507.14177v1
- Date: Fri, 11 Jul 2025 01:55:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-27 08:26:15.943156
- Title: Understanding Two-Layer Neural Networks with Smooth Activation Functions
- Title(参考訳): 平滑な活性化機能を持つ2層ニューラルネットワークの理解
- Authors: Changcun Huang,
- Abstract要約: 本稿では,2層ニューラルネットワークのバックプロパゲーションアルゴリズムによって得られるトレーニングソリューションを理解することを目的とする。
このメカニズムには、テイラー級数展開の構成、結び目の厳密な部分順序、滑らかなスプライン実装、滑らかな連続性制限の4つの原則が含まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to understand the training solution, which is obtained by the back-propagation algorithm, of two-layer neural networks whose hidden layer is composed of the units with smooth activation functions, including the usual sigmoid type most commonly used before the advent of ReLUs. The mechanism contains four main principles: construction of Taylor series expansions, strict partial order of knots, smooth-spline implementation and smooth-continuity restriction. The universal approximation for arbitrary input dimensionality is proved and experimental verification is given, through which the mystery of ``black box'' of the solution space is largely revealed. The new proofs employed also enrich approximation theory.
- Abstract(参考訳): 本稿では,ReLUの出現前によく用いられる通常のシグモノイド型を含む,スムーズな活性化機能を持つユニットからなる2層ニューラルネットワークのバックプロパゲーションアルゴリズムにより得られたトレーニングソリューションを理解することを目的とする。
このメカニズムには、テイラー級数展開の構成、結び目の厳密な部分順序、滑らかなスプライン実装、滑らかな連続性制限の4つの原則が含まれる。
任意の入力次元の普遍近似が証明され、実験的な検証が与えられ、解空間の `black box'' の謎が明らかにされる。
新しい証明も近似理論を豊かにしている。
関連論文リスト
- Function Forms of Simple ReLU Networks with Random Hidden Weights [1.2289361708127877]
無限幅限界における2層ReLUニューラルネットワークの関数空間ダイナミクスについて検討する。
ステアリング学習におけるフィッシャー情報行列の役割を強調した。
この研究は、広いニューラルネットワークを理解するための堅牢な基盤を提供する。
論文 参考訳(メタデータ) (2025-05-23T13:53:02Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
Neural Networks [49.870593940818715]
本稿では,第1層がランダムで固定された3層NNモデルの無限幅限界について検討する。
我々の理論はモデルの異なるスケーリング選択に対応しており、結果としてMF制限の2つの条件が顕著な振舞いを示す。
論文 参考訳(メタデータ) (2022-10-28T17:26:27Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
本研究では,スカラー値を持つ一層ネットワークのクラスとユークリッドノルムで有界な入力について検討する。
隠蔽層重み行列のスペクトルノルムの制御は、一様収束を保証するには不十分であることを示す。
スペクトルノルム制御が十分であることを示す2つの重要な設定を解析する。
論文 参考訳(メタデータ) (2022-02-13T07:12:02Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
論文 参考訳(メタデータ) (2022-01-28T11:30:06Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Linear approximability of two-layer neural networks: A comprehensive
analysis based on spectral decay [4.042159113348107]
まず、単一ニューロンの場合について考察し、コルモゴロフ幅で定量化される線形近似性は、共役核の固有値崩壊によって制御されることを示す。
また,2層ニューラルネットワークについても同様の結果が得られた。
論文 参考訳(メタデータ) (2021-08-10T23:30:29Z) - On Sparsity in Overparametrised Shallow ReLU Networks [42.33056643582297]
無限に広い状態であっても、限られた数のニューロンしか必要としない解を捉えるための異なる正規化戦略の能力について検討する。
オーバーパラメトリゼーションの量に関係なく、両方のスキームは、有限個のニューロンしか持たない関数によって最小化される。
論文 参考訳(メタデータ) (2020-06-18T01:35:26Z) - How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer [5.969858080492586]
重みをランダムに選択し、終端層のみをトレーニングする1次元(浅)ReLUニューラルネットワークを考える。
そのようなネットワークにおいて、L2-正則化回帰は関数空間において、かなり一般の損失汎関数に対する推定の第2微分を正則化するために対応することを示す。
論文 参考訳(メタデータ) (2019-11-07T13:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。