Boosted Enhanced Quantile Regression Neural Networks with Spatiotemporal Permutation Entropy for Complex System Prognostics
- URL: http://arxiv.org/abs/2507.14194v1
- Date: Mon, 14 Jul 2025 08:19:19 GMT
- Title: Boosted Enhanced Quantile Regression Neural Networks with Spatiotemporal Permutation Entropy for Complex System Prognostics
- Authors: David J Poland,
- Abstract summary: This paper presents a novel framework for pattern prediction and system prognostics centered on Permutation Permutation Entropy analysis.<n>We address the challenge of understanding complex dynamical patterns in multidimensional systems through an approach that combines entropy-based complexity measures with advanced neural architectures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel framework for pattern prediction and system prognostics centered on Spatiotemporal Permutation Entropy analysis integrated with Boosted Enhanced Quantile Regression Neural Networks (BEQRNNs). We address the challenge of understanding complex dynamical patterns in multidimensional systems through an approach that combines entropy-based complexity measures with advanced neural architectures. The system leverages dual computational stages: first implementing spatiotemporal entropy extraction optimized for multiscale temporal and spatial data streams, followed by an integrated BEQRNN layer that enables probabilistic pattern prediction with uncertainty quantification. This architecture achieves 81.17% accuracy in spatiotemporal pattern classification with prediction horizons up to 200 time steps and maintains robust performance across diverse regimes. Field testing across chaotic attractors, reaction-diffusion systems, and industrial datasets shows a 79% increase in critical transition detection accuracy and 81.22% improvement in long-term prediction reliability. The framework's effectiveness in processing complex, multimodal entropy features demonstrates significant potential for real-time prognostic applications.
Related papers
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Multiresolution Analysis and Statistical Thresholding on Dynamic Networks [49.09073800467438]
ANIE (Adaptive Network Intensity Estimation) is a multi-resolution framework designed to automatically identify the time scales at which network structure evolves.<n>We show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise.
arXiv Detail & Related papers (2025-06-01T22:55:55Z) - TI-DeepONet: Learnable Time Integration for Stable Long-Term Extrapolation [0.0]
TI-DeepONet is a framework that integrates neural operators with adaptive numerical time-stepping techniques.<n>This research establishes a physics-aware operator learning paradigm that bridges neural approximation with numerical analysis.
arXiv Detail & Related papers (2025-05-22T23:24:31Z) - BiDepth: A Bidirectional-Depth Neural Network for Spatio-Temporal Prediction [4.263291797886899]
This paper proposes the BiDepth Multimodal Neural Network (BDMNN), which integrates two key innovations.<n>BDMNN captures both long-term seasonality and immediate short-term events.<n> CSAC is designed to preserve crucial spatial relationships throughout the network, akin to standard convolutional layers.
arXiv Detail & Related papers (2025-01-14T19:59:59Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing [0.0]
"refreshing" mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation.
"refreshing" mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation.
arXiv Detail & Related papers (2024-01-24T07:47:01Z) - Split-Boost Neural Networks [1.1549572298362787]
We propose an innovative training strategy for feed-forward architectures - called split-boost.
Such a novel approach ultimately allows us to avoid explicitly modeling the regularization term.
The proposed strategy is tested on a real-world (anonymized) dataset within a benchmark medical insurance design problem.
arXiv Detail & Related papers (2023-09-06T17:08:57Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting [17.53378788483556]
Two common challenges afflicting long-horizon forecasting are the volatility of the predictions and their computational complexity.
We introduce N-HiTS, a model which addresses both challenges by incorporating novel hierarchical and multi-rate data sampling techniques.
We conduct an empirical evaluation demonstrating the advantages of N-HiTS over the state-of-the-art long-horizon forecasting methods.
arXiv Detail & Related papers (2022-01-30T17:52:19Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.