論文の概要: Intent-Based Network for RAN Management with Large Language Models
- arxiv url: http://arxiv.org/abs/2507.14230v1
- Date: Thu, 17 Jul 2025 04:57:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.786215
- Title: Intent-Based Network for RAN Management with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたRAN管理のためのインテントベースネットワーク
- Authors: Fransiscus Asisi Bimo, Maria Amparo Canaveras Galdon, Chun-Kai Lai, Ray-Guang Cheng, Edwin K. P. Chong,
- Abstract要約: 本稿では,Large Language Models (LLM) を利用した無線アクセスネットワーク(RAN)管理のための新しい自動化手法を提案する。
提案手法は、意図翻訳を強化し、高レベルな目的を自律的に解釈し、複雑なネットワーク状態を推論し、RANの正確な構成を生成する。
LLM-orchestrated agentic systemによるリアルタイムフィードバックに基づく戦略を適用することにより,RANにおける堅牢なリソース管理を実現する可能性を示す。
- 参考スコア(独自算出の注目度): 1.5588799679661638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced intelligent automation becomes an important feature to deal with the increased complexity in managing wireless networks. This paper proposes a novel automation approach of intent-based network for Radio Access Networks (RANs) management by leveraging Large Language Models (LLMs). The proposed method enhances intent translation, autonomously interpreting high-level objectives, reasoning over complex network states, and generating precise configurations of the RAN by integrating LLMs within an agentic architecture. We propose a structured prompt engineering technique and demonstrate that the network can automatically improve its energy efficiency by dynamically optimizing critical RAN parameters through a closed-loop mechanism. It showcases the potential to enable robust resource management in RAN by adapting strategies based on real-time feedback via LLM-orchestrated agentic systems.
- Abstract(参考訳): 高度にインテリジェントな自動化は、無線ネットワークの管理の複雑さの増加に対処する上で重要な機能である。
本稿では,Large Language Models (LLM) を利用した無線アクセスネットワーク(RAN)管理のための,意図に基づくネットワークの自動化手法を提案する。
提案手法は、意図翻訳を強化し、高レベルな目的を自律的に解釈し、複雑なネットワーク状態を推論し、エージェントアーキテクチャにLSMを統合することでRANの正確な構成を生成する。
本研究では,ネットワークが閉ループ機構を用いて重要なRANパラメータを動的に最適化することにより,ネットワークのエネルギー効率を向上できることを実証する。
LLM-orchestrated agentic systemによるリアルタイムフィードバックに基づく戦略を適用することにより,RANにおける堅牢なリソース管理を実現する可能性を示す。
関連論文リスト
- ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing [5.62872273155603]
マルチエージェント(MARL)をタスク関連で意味的にリッチな状態表現で拡張するデュアルLLMフレームワークである textitORAN-GUIDE を提案する。
その結果、ORAN-GUIDEは標準MARLおよび単一LLMベースライン上でのサンプル効率、ポリシー収束、性能一般化を改善することが示された。
論文 参考訳(メタデータ) (2025-05-31T14:21:19Z) - INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
インネットワークAI(In-network AI)は、ネットワークインフラストラクチャにおける人工知能(AI)のエスカレート要求に対処するための、変革的なアプローチである。
本稿では,AIのためのネットワーク内計算の最適化に関する包括的な分析を行う。
リソース制約のあるネットワークデバイスにAIモデルをマッピングするための方法論を調べ、メモリや計算能力の制限といった課題に対処する。
論文 参考訳(メタデータ) (2025-05-30T06:47:55Z) - LLM-hRIC: LLM-empowered Hierarchical RAN Intelligent Control for O-RAN [56.94324843095396]
本稿では、無線アクセスネットワーク(O-RAN)におけるRCC間の協調性を改善するため、LLM-hRIC(LLM-hRIC)フレームワークを紹介する。
このフレームワークは,グローバルネットワーク情報を用いたリアルタイムRIC(non-RT RIC)の戦略的ガイダンスを提供する。
RL搭載の近RT RICは実装者として機能し、このガイダンスとローカルリアルタイムデータを組み合わせて近RT決定を行う。
論文 参考訳(メタデータ) (2025-04-25T04:18:23Z) - AutoRNet: Automatically Optimizing Heuristics for Robust Network Design via Large Language Models [3.833708891059351]
AutoRNetは、大規模な言語モデルと進化的アルゴリズムを統合して堅牢なネットワークを生成するフレームワークである。
次数分布を維持しながら収束と多様性のバランスをとる適応適合度関数を導入する。
AutoRNetはスパースで高密度なスケールフリーネットワークで評価される。
論文 参考訳(メタデータ) (2024-10-23T08:18:38Z) - Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) は、前例のない効率性と適応性を持つ現代のネットワークの変動要求に対処する。
本稿では,モデルに依存しないメタラーニング(MAML)にインスパイアされたメタ深層強化学習(Meta-DRL)戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T23:04:30Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - Semantic Routing for Enhanced Performance of LLM-Assisted Intent-Based 5G Core Network Management and Orchestration [10.981422497762837]
大規模言語モデル(LLM)は人工知能(AI)アプリケーションで急速に普及している。
本稿では,5Gコアネットワークの意図に基づく管理とオーケストレーションにおける性能向上を目的としたセマンティックルーティングを提案する。
論文 参考訳(メタデータ) (2024-04-24T13:34:20Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。