Real-Time Communication-Aware Ride-Sharing Route Planning for Urban Air Mobility: A Multi-Source Hybrid Attention Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2507.14249v1
- Date: Fri, 18 Jul 2025 06:09:30 GMT
- Title: Real-Time Communication-Aware Ride-Sharing Route Planning for Urban Air Mobility: A Multi-Source Hybrid Attention Reinforcement Learning Approach
- Authors: Yuejiao Xie, Maonan Wang, Di Zhou, Man-On Pun, Zhu Han,
- Abstract summary: Urban Air Mobility (UAM) systems are rapidly emerging as promising solutions to alleviate urban congestion.<n>Unlike ground transportation, UAM trajectory planning has to prioritize communication quality for accurate location tracking.<n>This work proposes constructing a radio map to evaluate the communication quality of urban airspace.
- Score: 27.425849779266613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban Air Mobility (UAM) systems are rapidly emerging as promising solutions to alleviate urban congestion, with path planning becoming a key focus area. Unlike ground transportation, UAM trajectory planning has to prioritize communication quality for accurate location tracking in constantly changing environments to ensure safety. Meanwhile, a UAM system, serving as an air taxi, requires adaptive planning to respond to real-time passenger requests, especially in ride-sharing scenarios where passenger demands are unpredictable and dynamic. However, conventional trajectory planning strategies based on predefined routes lack the flexibility to meet varied passenger ride demands. To address these challenges, this work first proposes constructing a radio map to evaluate the communication quality of urban airspace. Building on this, we introduce a novel Multi-Source Hybrid Attention Reinforcement Learning (MSHA-RL) framework for the challenge of effectively focusing on passengers and UAM locations, which arises from the significant dimensional disparity between the representations. This model first generates the alignment among diverse data sources with large gap dimensions before employing hybrid attention to balance global and local insights, thereby facilitating responsive, real-time path planning. Extensive experimental results demonstrate that the approach enables communication-compliant trajectory planning, reducing travel time and enhancing operational efficiency while prioritizing passenger safety.
Related papers
- Plan Your Travel and Travel with Your Plan: Wide-Horizon Planning and Evaluation via LLM [58.50687282180444]
Travel planning is a complex task requiring the integration of diverse real-world information and user preferences.<n>We formulate this as an $L3$ planning problem, emphasizing long context, long instruction, and long output.<n>We introduce Multiple Aspects of Planning (MAoP), enabling LLMs to conduct wide-horizon thinking to solve complex planning problems.
arXiv Detail & Related papers (2025-06-14T09:37:59Z) - Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.<n>This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.<n>Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.<n>This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems [17.765742276150565]
CoDriveVLM is a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future Autonomous Mobility-on-Demand (AMoD) systems.<n>Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation.
arXiv Detail & Related papers (2025-01-10T17:44:57Z) - Strategizing Equitable Transit Evacuations: A Data-Driven Reinforcement Learning Approach [5.962540020947193]
This paper proposes a data-driven, reinforcement learning-based framework to optimize bus-based evacuations.<n>We model the evacuation problem as a Markov Decision Process solved by reinforcement learning.<n>We show that the proposed framework achieves significant improvements in both evacuation efficiency and equitable service distribution.
arXiv Detail & Related papers (2024-12-08T02:17:38Z) - GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.<n>This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Improving Autonomous Separation Assurance through Distributed
Reinforcement Learning with Attention Networks [0.0]
We present a reinforcement learning framework to provide autonomous self-separation capabilities within AAM corridors.
The problem is formulated as a Markov Decision Process and solved by developing a novel extension to the sample-efficient, off-policy soft actor-critic (SAC) algorithm.
A comprehensive numerical study shows that the proposed framework can ensure safe and efficient separation of aircraft in high density, dynamic environments.
arXiv Detail & Related papers (2023-08-09T13:44:35Z) - HALO: Hazard-Aware Landing Optimization for Autonomous Systems [1.5414037351414311]
This paper presents a coupled perception-planning solution which addresses the hazard detection, optimal landing trajectory generation, and contingency planning challenges.
We develop and combine two novel algorithms, Hazard-Aware Landing Site Selection (HALSS) and Adaptive Deferred-Decision Trajectory Optimization (-DDTO), to address the perception and planning challenges.
We demonstrate the efficacy of our approach using a simulated Martian environment and show that our coupled perception-planning method achieves greater landing success.
arXiv Detail & Related papers (2023-04-04T07:20:06Z) - A Bibliometric Analysis and Review on Reinforcement Learning for
Transportation Applications [43.356096302298056]
Transportation is the backbone of the economy and urban development.
Reinforcement Learning (RL) that enables autonomous decision-makers to interact with the complex environment.
This paper conducts a bibliometric analysis to identify the development of RL-based methods for transportation applications.
arXiv Detail & Related papers (2022-10-26T07:34:51Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
Urban air mobility (UAM) has been proposed in which vertical takeoff and landing (VTOL) aircraft are used to provide a ride-hailing service.
In UAM, aircraft can operate in designated air spaces known as corridors, that link the aerodromes.
A reliable communication network between GBSs and aircraft enables UAM to adequately utilize the airspace.
arXiv Detail & Related papers (2021-12-26T14:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.