論文の概要: Bridging MOOCs, Smart Teaching, and AI: A Decade of Evolution Toward a Unified Pedagogy
- arxiv url: http://arxiv.org/abs/2507.14266v1
- Date: Fri, 18 Jul 2025 14:57:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.812798
- Title: Bridging MOOCs, Smart Teaching, and AI: A Decade of Evolution Toward a Unified Pedagogy
- Title(参考訳): MOOC、スマートインストラクション、AIの橋渡し:統一教育への進化の10年
- Authors: Bo Yuan, Jiazi Hu,
- Abstract要約: 本稿では,MOOCのスケーラビリティ,スマート教育の応答性,AIの適応性を組み合わせた3層指導フレームワークを提案する。
この結果は、学習者のエンゲージメントを高め、インストラクターをサポートし、パーソナライズされながらスケーラブルな学習を可能にするフレームワークの可能性を強調している。
- 参考スコア(独自算出の注目度): 4.943165921136573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, higher education has evolved through three distinct paradigms: the emergence of Massive Open Online Courses (MOOCs), the integration of Smart Teaching technologies into classrooms, and the rise of AI-enhanced learning. Each paradigm is intended to address specific challenges in traditional education: MOOCs enable ubiquitous access to learning resources; Smart Teaching supports real-time interaction with data-driven insights; and generative AI offers personalized feedback and on-demand content generation. However, these paradigms are often implemented in isolation due to their disparate technological origins and policy-driven adoption. This paper examines the origins, strengths, and limitations of each paradigm, and advocates a unified pedagogical perspective that synthesizes their complementary affordances. We propose a three-layer instructional framework that combines the scalability of MOOCs, the responsiveness of Smart Teaching, and the adaptivity of AI. To demonstrate its feasibility, we present a curriculum design for a project-based course. The findings highlight the framework's potential to enhance learner engagement, support instructors, and enable personalized yet scalable learning.
- Abstract(参考訳): 過去10年間、高等教育は、3つの異なるパラダイムによって進化してきた。MOOC(Massive Open Online Courses)の出現、スマート教育技術の教室への統合、AI強化学習の台頭である。
それぞれのパラダイムは、従来の教育における特定の課題に対処することを意図している。MOOCは学習リソースへのユビキタスアクセスを可能にし、Smart Teachingはデータ駆動型インサイトとのリアルタイムインタラクションをサポートし、生成AIはパーソナライズされたフィードバックとオンデマンドコンテンツ生成を提供する。
しかし、これらのパラダイムは、異なる技術的起源と政策主導の採用のために、しばしば分離して実装される。
本稿では,各パラダイムの起源,強み,限界について考察し,その相補的余裕を総合した教育的視点を提唱する。
本稿では,MOOCのスケーラビリティ,スマート教育の応答性,AIの適応性を組み合わせた3層指導フレームワークを提案する。
実現可能性を示すために,プロジェクトベースコースのカリキュラム設計を提案する。
この結果は、学習者のエンゲージメントを高め、インストラクターをサポートし、パーソナライズされながらスケーラブルな学習を可能にするフレームワークの可能性を強調している。
関連論文リスト
- Enhancing AI-Driven Education: Integrating Cognitive Frameworks, Linguistic Feedback Analysis, and Ethical Considerations for Improved Content Generation [0.0]
本稿では,4つの関連研究から洞察を合成し,AI駆動型教育ツールの強化のための包括的枠組みを提案する。
我々は、認知アセスメントフレームワーク、AI生成フィードバックの言語分析、倫理設計原則を統合し、効果的で責任のあるAIツールの開発を指導する。
論文 参考訳(メタデータ) (2025-05-01T06:36:21Z) - Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.055899073629]
非学習はしばしば、生成AIモデルからターゲット情報の影響を取り除くソリューションとして呼び出される。
未学習はまた、モデルが出力中にターゲットとなるタイプの情報を生成するのを防ぐ方法として提案されている。
これら2つの目標 - モデルからの情報の標的的除去と、モデル出力からの情報のターゲット的抑制 - は、様々な技術的および現実的な課題を表す。
論文 参考訳(メタデータ) (2024-12-09T20:18:43Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
論文 参考訳(メタデータ) (2024-10-14T16:01:01Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
我々は,情報メタ学習の原理を理論的に導入・動機付けし,自動的かつ制御可能な帰納バイアス選択を可能にする。
データ効率と一般化を改善するための情報メタラーニングのメリットと限界を実証的に示す。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - White Paper: The Generative Education (GenEd) Framework [0.0]
Generative Education(GenEd)フレームワークは、教育におけるLarge Language Models(LLM)からLarge Multimodal Models(LMM)への移行を探求する。
本稿では,パーソナライズ,対話的,感情的な学習環境を構築するためのLMMの可能性について考察する。
論文 参考訳(メタデータ) (2023-10-16T23:30:42Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。