論文の概要: Isotonic Quantile Regression Averaging for uncertainty quantification of electricity price forecasts
- arxiv url: http://arxiv.org/abs/2507.15079v1
- Date: Sun, 20 Jul 2025 18:28:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.1854
- Title: Isotonic Quantile Regression Averaging for uncertainty quantification of electricity price forecasts
- Title(参考訳): 電気価格予測の不確実性定量化のための等速量子回帰平均化
- Authors: Arkadiusz Lipiecki, Bartosz Uniejewski,
- Abstract要約: アイソトニック量子回帰平均化(iQRA)と呼ばれる点予測のアンサンブルから確率予測を生成する新しい手法を提案する。
iQRAは信頼性とシャープさの両方の観点から,最先端のポストプロセッシング手法よりも一貫して優れていることを示す。
精度の高い予測間隔を複数の信頼レベルにわたって生成し、全てのベンチマーク手法に優れた信頼性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying the uncertainty of forecasting models is essential to assess and mitigate the risks associated with data-driven decisions, especially in volatile domains such as electricity markets. Machine learning methods can provide highly accurate electricity price forecasts, critical for informing the decisions of market participants. However, these models often lack uncertainty estimates, which limits the ability of decision makers to avoid unnecessary risks. In this paper, we propose a novel method for generating probabilistic forecasts from ensembles of point forecasts, called Isotonic Quantile Regression Averaging (iQRA). Building on the established framework of Quantile Regression Averaging (QRA), we introduce stochastic order constraints to improve forecast accuracy, reliability, and computational costs. In an extensive forecasting study of the German day-ahead electricity market, we show that iQRA consistently outperforms state-of-the-art postprocessing methods in terms of both reliability and sharpness. It produces well-calibrated prediction intervals across multiple confidence levels, providing superior reliability to all benchmark methods, particularly coverage-based conformal prediction. In addition, isotonic regularization decreases the complexity of the quantile regression problem and offers a hyperparameter-free approach to variable selection.
- Abstract(参考訳): 予測モデルの不確実性の定量化は、特に電気市場のような不安定な領域において、データ駆動型決定に関連するリスクの評価と緩和に不可欠である。
機械学習の手法は、高精度な電気価格予測を提供することができ、市場参加者の判断を伝えるのに不可欠である。
しかしながら、これらのモデルには不確実性見積が欠如しており、不必要なリスクを避けるための意思決定者の能力が制限されている。
本稿では,Isotonic Quantile Regression Averaging (iQRA) と呼ばれる,点予測のアンサンブルから確率予測を生成する新しい手法を提案する。
QRA(Quantile Regression Averaging)の確立した枠組みに基づいて,予測精度,信頼性,計算コストを改善するための確率的順序制約を導入する。
ドイツのデイアヘッド電力市場に関する広範な予測研究において、iQRAは信頼性と鋭さの両方の観点から、最先端のポストプロセッシング手法を一貫して上回っていることを示す。
精度の高い予測間隔を複数の信頼レベルにわたって生成し、ベンチマーク手法、特にカバレッジベースの共形予測に優れた信頼性を提供する。
さらに、等方正則化は量子レグレッション問題の複雑性を減少させ、変数選択に対するハイパーパラメータフリーなアプローチを提供する。
関連論文リスト
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
再生可能エネルギーの電気市場への統合は 価格安定に重大な課題をもたらします
本研究では, Conformal Prediction (CP) 技術を用いた確率的価格予測の強化について検討した。
本稿では,量子レグレッションモデルの効率と時系列適応CP手法の強靭なカバレッジ特性を組み合わせたアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2025-02-07T13:57:47Z) - Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand [8.068451210598678]
電力システムは、決定論的に説明できない複数の要因から生じる不確実性の下で運用される。
ディープラーニングの最近の進歩は、ポイント予測の精度を大幅に向上させるのに役立っている。
任意の量子を予測できる分布予測のための新しい一般手法を提案する。
論文 参考訳(メタデータ) (2024-04-26T14:43:19Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
既存の予測アプローチの多くは、効果的な意思決定に必要な深さを欠いて、単一ポイントの予測に焦点を当てている。
本稿では,不確実性をより効果的に定量化するために,ストック間隔予測のためのシーケンス生成を導入するRAGICを提案する。
RAGICのジェネレータには、情報投資家のリスク認識をキャプチャするリスクモジュールと、歴史的価格動向と季節性を考慮した時間モジュールが含まれている。
論文 参考訳(メタデータ) (2024-02-16T15:34:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - DiffLoad: Uncertainty Quantification in Electrical Load Forecasting with the Diffusion Model [22.428737156882708]
再生可能エネルギー源の統合と、新型コロナウイルスのパンデミックなどの外部イベントの発生により、負荷予測の不確実性が急速に高まっている。
本稿では, エピステミック不確かさを推定するための拡散型Seq2Seq構造を提案し, 強靭性付加コーシー分布を用いてアレタリック不確かさを推定する。
論文 参考訳(メタデータ) (2023-05-31T05:04:50Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Calibrated Regression Against An Adversary Without Regret [10.470326550507117]
データポイントの任意のストリーム上でこれらの目標を達成するために保証されたオンラインアルゴリズムを導入する。
具体的には、アルゴリズムは(1)キャリブレーションされた予測を生成する。すなわち、80%の信頼区間は、その時間の80%の真の結果を含む。
我々は、回帰においてこれらの目標を確実に達成するポストホックリカレーション戦略を実装している。
論文 参考訳(メタデータ) (2023-02-23T17:42:11Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。