Disentangling Homophily and Heterophily in Multimodal Graph Clustering
- URL: http://arxiv.org/abs/2507.15253v1
- Date: Mon, 21 Jul 2025 05:29:53 GMT
- Title: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
- Authors: Zhaochen Guo, Zhixiang Shen, Xuanting Xie, Liangjian Wen, Zhao Kang,
- Abstract summary: Multimodal graphs integrate unstructured heterogeneous data with structured interconnections.<n>Disentangled Multimodal Graph Clustering (DMGC) decomposes hybrid graphs into two complementary views.<n>DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings.
- Score: 7.565710850295745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal graphs, which integrate unstructured heterogeneous data with structured interconnections, offer substantial real-world utility but remain insufficiently explored in unsupervised learning. In this work, we initiate the study of multimodal graph clustering, aiming to bridge this critical gap. Through empirical analysis, we observe that real-world multimodal graphs often exhibit hybrid neighborhood patterns, combining both homophilic and heterophilic relationships. To address this challenge, we propose a novel framework -- \textsc{Disentangled Multimodal Graph Clustering (DMGC)} -- which decomposes the original hybrid graph into two complementary views: (1) a homophily-enhanced graph that captures cross-modal class consistency, and (2) heterophily-aware graphs that preserve modality-specific inter-class distinctions. We introduce a \emph{Multimodal Dual-frequency Fusion} mechanism that jointly filters these disentangled graphs through a dual-pass strategy, enabling effective multimodal integration while mitigating category confusion. Our self-supervised alignment objectives further guide the learning process without requiring labels. Extensive experiments on both multimodal and multi-relational graph datasets demonstrate that DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings. Our code is available at https://github.com/Uncnbb/DMGC.
Related papers
- Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
We propose a novel Multi-Relation Graph- Kernel Strengthen Network for Graph-Level Clustering (MGSN)<n>MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs.<n>A relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views.
arXiv Detail & Related papers (2025-04-02T11:17:15Z) - UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs [34.48393396390799]
We propose a novel cross-domain graph foundation model that enables general representation learning on multimodal graphs.<n>UniGraph2 employs modality-specific encoders alongside a graph neural network (GNN) to learn a unified low-dimensional embedding space.<n>We show that UniGraph2 significantly outperforms state-of-the-art models in tasks such as representation learning, transfer learning, and multimodal generative tasks.
arXiv Detail & Related papers (2025-02-02T14:04:53Z) - SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering [18.108753344903473]
We propose a novel SiMilarity-enhanced Homophily for Multi-view Heterophilous Graph Clustering (SMHGC) approach.
The state-of-the-art experimental results on both multi-view heterophilous and homophilous datasets collectively demonstrate the strong capacity of similarity for unsupervised multi-view heterophilous graph learning.
arXiv Detail & Related papers (2024-10-04T16:55:35Z) - When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels.
We define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem.
arXiv Detail & Related papers (2024-09-01T10:25:06Z) - M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning
of Mixture Graph Matching and Clustering [57.947071423091415]
We introduce Minorize-Maximization Matching and Clustering (M3C), a learning-free algorithm that guarantees theoretical convergence.
We develop UM3C, an unsupervised model that incorporates novel edge-wise affinity learning and pseudo label selection.
Our method outperforms state-of-the-art graph matching and mixture graph matching and clustering approaches in both accuracy and efficiency.
arXiv Detail & Related papers (2023-10-27T19:40:34Z) - Multi-modal Multi-kernel Graph Learning for Autism Prediction and Biomarker Discovery [41.90994949022173]
We propose a novel method to offset the negative impact between modalities in the process of multi-modal integration and extract heterogeneous information from graphs.<n>Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange (ABIDE) dataset and outperforms the state-of-the-art methods.<n>In addition, discriminative brain regions associated with autism are identified by our model, providing guidance for the study of autism pathology.
arXiv Detail & Related papers (2023-03-03T07:09:17Z) - Variational Graph Generator for Multi-View Graph Clustering [51.89092260088973]
We propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC)<n>This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs.<n>It embeds the inferred view-common graph and view-specific graphs together with features.
arXiv Detail & Related papers (2022-10-13T13:19:51Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
This study investigates the problem of multi-view clustering, where multiple views contain consistent information and each view also includes complementary information.
We propose a method that involves consistent and complementary graph-regularized multi-view subspace clustering (GRMSC)
The objective function is optimized by the augmented Lagrangian multiplier method in order to achieve multi-view clustering.
arXiv Detail & Related papers (2020-04-07T03:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.