論文の概要: Predictive Process Monitoring Using Object-centric Graph Embeddings
- arxiv url: http://arxiv.org/abs/2507.15411v1
- Date: Mon, 21 Jul 2025 09:10:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.33554
- Title: Predictive Process Monitoring Using Object-centric Graph Embeddings
- Title(参考訳): オブジェクト中心グラフ埋め込みを用いた予測プロセスモニタリング
- Authors: Wissam Gherissi, Mehdi Acheli, Joyce El Haddad, Daniela Grigori,
- Abstract要約: 本稿では,次のアクティビティ予測と次のイベント時間という2つのタスクに焦点をあて,将来のプロセス行動を予測するエンド・ツー・エンド・エンド・モデルを提案する。
提案モデルでは,アクティビティとその関係を符号化するグラフアテンションネットワークと,時間的依存を処理するLSTMネットワークを併用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-centric predictive process monitoring explores and utilizes object-centric event logs to enhance process predictions. The main challenge lies in extracting relevant information and building effective models. In this paper, we propose an end-to-end model that predicts future process behavior, focusing on two tasks: next activity prediction and next event time. The proposed model employs a graph attention network to encode activities and their relationships, combined with an LSTM network to handle temporal dependencies. Evaluated on one reallife and three synthetic event logs, the model demonstrates competitive performance compared to state-of-the-art methods.
- Abstract(参考訳): オブジェクト中心の予測プロセス監視は、プロセス予測を強化するために、オブジェクト中心のイベントログを調査し、利用する。
主な課題は、関連する情報を抽出し、効果的なモデルを構築することである。
本稿では,次のアクティビティ予測と次のイベント時間という2つのタスクに焦点をあて,将来のプロセス行動を予測するエンド・ツー・エンド・エンド・モデルを提案する。
提案モデルでは,アクティビティとその関係を符号化するグラフアテンションネットワークと,時間的依存を処理するLSTMネットワークを併用する。
1つの実生活と3つの合成イベントログに基づいて評価し、最先端の手法と比較して競合性能を示す。
関連論文リスト
- HOEG: A New Approach for Object-Centric Predictive Process Monitoring [0.6144680854063939]
予測プロセスモニタリングは、残りの時間を予測するなど、進行中のプロセス実行の将来の状態を予測することに焦点を当てる。
オブジェクト中心のプロセスマイニングの最近の進歩は、オブジェクトとイベントデータと、イベント間の明示的な関係を豊かにしている。
本稿では,イベントとオブジェクトを多種多様なノード型でグラフ構造に統合するヘテロジニアスオブジェクトイベントグラフ符号化(HOEG)を提案する。
そして、予測タスクにこれらの多様なオブジェクト特徴を組み込んだ異種グラフニューラルネットワークアーキテクチャを採用する。
論文 参考訳(メタデータ) (2024-04-08T09:06:16Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
学習対象としてイベントを直接扱うイベントベースのモデリングフレームワークを提案する。
イベントベースのモデリング(後処理なし)は、広範囲な後処理を伴うエポックベースのモデリングと同等以上のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-09-22T13:44:13Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
本稿では,予測モニタリングの中間地点となるプロセス・アズ・ムーブズ(PAM)について紹介する。
プロセス実行トレースのさまざまなウィンドウにおけるアクティビティ間の宣言的なプロセス制約をキャプチャすることで実現します。
高次元入力に適した様々なリカレントニューラルネットワークトポロジを使用して、ウィンドウをタイムステップとしてプロセスモデルの進化をモデル化する。
論文 参考訳(メタデータ) (2020-11-05T13:57:33Z) - Context-dependent self-exciting point processes: models, methods, and
risk bounds in high dimensions [21.760636228118607]
高次元自己回帰ポイントプロセスは、現在のイベントが、ソーシャルネットワークの1人のメンバーによる活動のような将来の出来事を誘発または抑制する方法をモデル化する。
我々は、機械学習における合成時系列と正規化手法のアイデアを活用し、高次元マークポイントプロセスのネットワーク推定を行う。
論文 参考訳(メタデータ) (2020-03-16T20:22:43Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。