論文の概要: DeSamba: Decoupled Spectral Adaptive Framework for 3D Multi-Sequence MRI Lesion Classification
- arxiv url: http://arxiv.org/abs/2507.15487v1
- Date: Mon, 21 Jul 2025 10:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.362682
- Title: DeSamba: Decoupled Spectral Adaptive Framework for 3D Multi-Sequence MRI Lesion Classification
- Title(参考訳): DeSamba: 3次元マルチシーケンスMRI病変分類のための分離スペクトル適応フレームワーク
- Authors: Dezhen Wang, Sheng Miao, Rongxin Chai, Jiufa Cui,
- Abstract要約: DeSambaは、分離された表現を抽出し、病変分類のための空間的特徴とスペクトル的特徴を適応的に融合するように設計されたフレームワークである。
DeSambaは62.10%のTop-1精度、63.62%のF1スコア、87.71%のAUC、93.55%のTop-3精度を達成した。
- 参考スコア(独自算出の注目度): 0.6749750044497732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) sequences provide rich spatial and frequency domain information, which is crucial for accurate lesion classification in medical imaging. However, effectively integrating multi-sequence MRI data for robust 3D lesion classification remains a challenge. In this paper, we propose DeSamba (Decoupled Spectral Adaptive Network and Mamba-Based Model), a novel framework designed to extract decoupled representations and adaptively fuse spatial and spectral features for lesion classification. DeSamba introduces a Decoupled Representation Learning Module (DRLM) that decouples features from different MRI sequences through self-reconstruction and cross-reconstruction, and a Spectral Adaptive Modulation Block (SAMB) within the proposed SAMNet, enabling dynamic fusion of spectral and spatial information based on lesion characteristics. We evaluate DeSamba on two clinically relevant 3D datasets. On a six-class spinal metastasis dataset (n=1,448), DeSamba achieves 62.10% Top-1 accuracy, 63.62% F1-score, 87.71% AUC, and 93.55% Top-3 accuracy on an external validation set (n=372), outperforming all state-of-the-art (SOTA) baselines. On a spondylitis dataset (n=251) involving a challenging binary classification task, DeSamba achieves 70.00%/64.52% accuracy and 74.75/73.88 AUC on internal and external validation sets, respectively. Ablation studies demonstrate that both DRLM and SAMB significantly contribute to overall performance, with over 10% relative improvement compared to the baseline. Our results highlight the potential of DeSamba as a generalizable and effective solution for 3D lesion classification in multi-sequence medical imaging.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は、医用画像の正確な病変分類に欠かせない、豊かな空間および周波数領域情報を提供する。
しかし、堅牢な3次元病変分類のためのマルチシーケンスMRIデータを効果的に統合することは依然として困難である。
本稿では,デサンバ(DeSamba, DeSamba, DeSamba, DeSamba, DeSamba, DeSamba, DeSamba-based Model)を提案する。
DeSamba氏は、自己再構成とクロス再構成を通じて異なるMRIシーケンスから特徴を分離するDecoupled Representation Learning Module (DRLM)と、提案したSAMNet内のSpectral Adaptive Modulation Block (SAMB)を導入し、病変特性に基づいたスペクトル情報と空間情報の動的融合を可能にする。
臨床的に関係のある2つの3Dデータセット上でDeSambaを評価する。
6クラスの脊椎転移データセット(n=1,448)では、DeSambaは62.10%のTop-1精度、63.62%のF1スコア、87.71%のAUC、93.55%のTop-3精度を外部検証セット(n=372)で達成し、SOTA(State-of-the-art)ベースラインを上回っている。
挑戦的なバイナリ分類タスクを含む脊椎炎データセット(n=251)では、DeSambaは、それぞれ内部および外部の検証セット上で70.00%/64.52%の精度と74.75/73.88 AUCを達成する。
アブレーション研究では,DRLMとSAMBの両者が総合的な性能に大きく寄与し,ベースラインに比べて10%以上の改善が見られた。
以上の結果から,マルチシーケンス医用画像における3次元病変分類の汎用的,効果的な解法として,DeSambaの有用性が示唆された。
関連論文リスト
- Performance Analysis of Deep Learning Models for Femur Segmentation in MRI Scan [5.5193366921929155]
我々は3つのCNNベースモデル(U-Net, Attention U-Net, U-KAN)と1つのトランスフォーマーベースモデルSAM 2の性能評価と比較を行った。
このデータセットは11,164個のMRIスキャンと大腿骨領域の詳細なアノテーションから構成されている。
注意点U-Netは全体のスコアが最も高く、U-KANは興味の少ない解剖学的領域において優れたパフォーマンスを示した。
論文 参考訳(メタデータ) (2025-04-05T05:47:56Z) - SAMRI-2: A Memory-based Model for Cartilage and Meniscus Segmentation in 3D MRIs of the Knee Joint [0.7879983966759583]
本研究では,メモリベースのVFMを用いた3次元MRIによる軟骨・半月板分割のためのディープラーニング(DL)手法を提案する。
我々はCNNベースの3D-VNetと2つの自動トランスフォーマーベースモデル(SaMRI2DとSaMRI3D)、およびトランスフォーマーベースのプロンプト可能なメモリベースVFM(SAMRI-2)を270例の3D膝MRIで訓練した。
SAMRI-2はHSSで訓練され、他の全てのモデルより優れ、平均5ポイント改善し、最高12ポイント向上した。
論文 参考訳(メタデータ) (2025-02-14T21:18:01Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では,データ合成における生成モデルの利用について検討する。
本稿では,テキストプロンプトとセグメンテーションマスクを条件とした医用画像合成のためのデータエンジンMRGenを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - MedSegMamba: 3D CNN-Mamba Hybrid Architecture for Brain Segmentation [15.514511820130474]
我々は皮質下脳分割のための3DパッチベースのハイブリッドCNN-Mambaモデルを開発した。
モデルの性能をいくつかのベンチマークで検証した。
論文 参考訳(メタデータ) (2024-09-12T02:19:19Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Synthesis-based Imaging-Differentiation Representation Learning for
Multi-Sequence 3D/4D MRI [16.725225424047256]
画像差分表現学習のためのシーケンス・ツー・シーケンス生成フレームワーク(Seq2Seq)を提案する。
本研究では、1つのモデル内で任意の3D/4Dシーケンスを生成し、任意のターゲットシーケンスを生成するだけでなく、各シーケンスの重要性をランク付けする。
我々は,2万名の模擬被験者のおもちゃデータセット,1,251名の脳MRIデータセット,2,101名の乳房MRIデータセットを含む3つのデータセットを用いて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-01T15:37:35Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
半教師付き複合脊椎ネットワーク (SSHSNet) という2段階のアルゴリズムを提案し, 同時椎体 (VBs) と椎間板 (IVDs) のセグメンテーションを実現する。
まず,2次元半監督型DeepLabv3+をクロス擬似監督を用いて構築し,スライス内特徴と粗いセグメンテーションを得た。
2段目では、3Dフル解像度のパッチベースのDeepLabv3+がスライス間情報を抽出するために構築された。
その結果,提案手法はデータ不均衡問題に対処する上で大きな可能性を秘めていることがわかった。
論文 参考訳(メタデータ) (2022-03-23T02:57:14Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。