論文の概要: We Need to Rethink Benchmarking in Anomaly Detection
- arxiv url: http://arxiv.org/abs/2507.15584v1
- Date: Mon, 21 Jul 2025 13:02:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.401012
- Title: We Need to Rethink Benchmarking in Anomaly Detection
- Title(参考訳): 異常検出におけるベンチマークの再考
- Authors: Philipp Röchner, Simon Klüttermann, Franz Rothlauf, Daniel Schlör,
- Abstract要約: この停滞は、異常検出アルゴリズムの評価方法に制限があるためである、と我々は主張する。
我々の意見では、異常検出は、異なるアプリケーションの関連する特性をキャプチャするシナリオを用いて研究されるべきである。
- 参考スコア(独自算出の注目度): 0.9124662097191378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the continuous proposal of new anomaly detection algorithms and extensive benchmarking efforts, progress seems to stagnate, with only minor performance differences between established baselines and new algorithms. In this position paper, we argue that this stagnation is due to limitations in how we evaluate anomaly detection algorithms. Current benchmarking does not, for example, sufficiently reflect the diversity of anomalies in applications ranging from predictive maintenance to scientific discovery. Consequently, we need to rethink benchmarking in anomaly detection. In our opinion, anomaly detection should be studied using scenarios that capture the relevant characteristics of different applications. We identify three key areas for improvement: First, we need to identify anomaly detection scenarios based on a common taxonomy. Second, anomaly detection pipelines should be analyzed end-to-end and by component. Third, evaluating anomaly detection algorithms should be meaningful regarding the scenario's objectives.
- Abstract(参考訳): 新しい異常検出アルゴリズムと広範なベンチマークの取り組みの継続的な提案にもかかわらず、進歩は停滞しているように思われる。
本稿では, この停滞は, 異常検出アルゴリズムの評価方法の限界によるものであると論じる。
例えば、現在のベンチマークは、予測保守から科学的発見まで、アプリケーションの異常の多様性を十分に反映していない。
したがって、異常検出においてベンチマークを再考する必要がある。
我々の意見では、異常検出は、異なるアプリケーションの関連する特性をキャプチャするシナリオを用いて研究されるべきである。
まず、共通の分類に基づく異常検出シナリオを特定する必要がある。
第二に、異常検出パイプラインはエンドツーエンドとコンポーネントによって分析されるべきである。
第三に、異常検出アルゴリズムの評価はシナリオの目的に意味を持つべきである。
関連論文リスト
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
異常検出(AD)は、正規性の学習モデルに適合しない観察を識別する重要なタスクである。
本稿では, 入力空間における説明不能な観測として, 説明可能性を用いた新しいAD手法を提案する。
当社のアプローチでは,複数のベンチマークにまたがる新たな最先端性を確立し,さまざまな異常な型を扱う。
論文 参考訳(メタデータ) (2023-10-01T21:24:05Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
本稿では,新しいタイプの異常検出法であるPrecursor-of-Anomaly(PoA)について述べる。
両問題を同時に解くために,ニューラルネットワークとマルチタスク学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-27T14:10:09Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Towards Interpretable Anomaly Detection via Invariant Rule Mining [2.538209532048867]
本研究では,不変ルールマイニングによる高度に解釈可能な異常検出を追求する。
具体的には、決定木学習と相関ルールマイニングを活用して、不変ルールを自動的に生成する。
生成された不変規則は、異常検出結果の明示的な説明を提供することができるため、その後の意思決定には極めて有用である。
論文 参考訳(メタデータ) (2022-11-24T13:03:20Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Anomaly Detection in Predictive Maintenance: A New Evaluation Framework
for Temporal Unsupervised Anomaly Detection Algorithms [9.316869851584771]
異常検出の研究は、異常なインスタンスを表すものの統一的な定義を欠いている。
本稿では、教師なし異常検出アルゴリズムを評価するために、区間に対する正および負のインスタンスの概念を提案する。
この定義の有用性を示すために,企業ArcelorMittalが提供する実世界の時系列問題を用いたビッグデータアルゴリズムのケーススタディを含む。
論文 参考訳(メタデータ) (2021-05-26T20:15:40Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Algorithmic Frameworks for the Detection of High Density Anomalies [0.0]
高密度異常(英: high-density anomalies)は、データ空間の最も正常な領域に位置する不確定なケースである。
本研究では、教師なし検出のための非パラメトリックアルゴリズムフレームワークをいくつか導入する。
論文 参考訳(メタデータ) (2020-10-09T17:48:02Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
時系列データの異常検出は、長い間重要な研究分野であった。
近年,時系列の異常を検出する機械学習アルゴリズムが増えている。
研究者たちは、(ディープ)ニューラルネットワークを使ってこれらの技術を改善しようとした。
論文 参考訳(メタデータ) (2020-04-01T13:22:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。