論文の概要: Uncovering Critical Features for Deepfake Detection through the Lottery Ticket Hypothesis
- arxiv url: http://arxiv.org/abs/2507.15636v1
- Date: Mon, 21 Jul 2025 13:58:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.429234
- Title: Uncovering Critical Features for Deepfake Detection through the Lottery Ticket Hypothesis
- Title(参考訳): Lottery Ticket仮説によるディープフェイク検出のクリティカルな特徴の解明
- Authors: Lisan Al Amin, Md. Ismail Hossain, Thanh Thi Nguyen, Tasnim Jahan, Mahbubul Islam, Faisal Quader,
- Abstract要約: ディープフェイク技術は情報整合性と社会的信頼に重大な課題をもたらす。
本研究では,LTH(Lottery Ticket hypothesis)のディープフェイク検出への応用について検討した。
検出精度を高く保ちながら、ニューラルネットワークを効率的に刈り取る方法について検討する。
- 参考スコア(独自算出の注目度): 1.723963662326051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deepfake technology have created increasingly convincing synthetic media that poses significant challenges to information integrity and social trust. While current detection methods show promise, their underlying mechanisms remain poorly understood, and the large sizes of their models make them challenging to deploy in resource-limited environments. This study investigates the application of the Lottery Ticket Hypothesis (LTH) to deepfake detection, aiming to identify the key features crucial for recognizing deepfakes. We examine how neural networks can be efficiently pruned while maintaining high detection accuracy. Through extensive experiments with MesoNet, CNN-5, and ResNet-18 architectures on the OpenForensic and FaceForensics++ datasets, we find that deepfake detection networks contain winning tickets, i.e., subnetworks, that preserve performance even at substantial sparsity levels. Our results indicate that MesoNet retains 56.2% accuracy at 80% sparsity on the OpenForensic dataset, with only 3,000 parameters, which is about 90% of its baseline accuracy (62.6%). The results also show that our proposed LTH-based iterative magnitude pruning approach consistently outperforms one-shot pruning methods. Using Grad-CAM visualization, we analyze how pruned networks maintain their focus on critical facial regions for deepfake detection. Additionally, we demonstrate the transferability of winning tickets across datasets, suggesting potential for efficient, deployable deepfake detection systems.
- Abstract(参考訳): 近年のディープフェイク技術の発展は、情報完全性や社会的信頼に重大な課題をもたらす、ますます説得力のある合成メディアを生み出している。
現在の検出手法は将来性を示すが、その基盤となるメカニズムは理解されていないままであり、モデルのサイズが大きいため、リソース制限された環境でのデプロイは困難である。
本研究は, ディープフェイク検出にLottery Ticket hypothesis (LTH) を適用し, ディープフェイク認識に欠かせない重要な特徴を同定することを目的とした。
検出精度を高く保ちながら、ニューラルネットワークを効率的に刈り取る方法について検討する。
OpenForensicおよびFaceForensics++データセット上のMesoNet、CNN-5、ResNet-18アーキテクチャによる広範な実験により、ディープフェイク検出ネットワークには、大きなスパシティレベルであってもパフォーマンスを維持するサブネットワーク(subnetworks)を含むことが判明した。
我々の結果は、MesoNetがOpenForensicデータセットの80%の間隔で56.2%の精度を維持しており、その基準精度の約90%(62.6%)のパラメータしか持たないことを示している。
また,LTHに基づく反復等級プルーニング手法は単発プルーニング法よりも一貫して優れていた。
我々は,Grad-CAM視覚化を用いて,プルーンドネットワークがディープフェイク検出のために重要な顔領域にどのように焦点を合わせているかを分析する。
さらに、データセット間での当選チケットの転送可能性を示し、効率的でデプロイ可能なディープフェイク検出システムの可能性を示した。
関連論文リスト
- Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better [63.567886330598945]
赤外線小目標(IRST)検出は、精度、普遍性、堅牢性、効率的な性能を同時に達成する上で困難である。
現在の学習に基づく手法は、空間的領域と短期的領域の両方から"より多くの情報を活用する。
本稿では、IRST検出のための時間次元でのみ計算を行う効率的な深部プローブネットワーク(DeepPro)を提案する。
論文 参考訳(メタデータ) (2025-06-15T08:19:32Z) - Comparative Analysis of Deepfake Detection Models: New Approaches and Perspectives [0.0]
この研究は、GenConViTモデルに焦点を当て、ディープフェイクを識別するための異なるアプローチを調査し、比較する。
研究を文脈化するために、ディープフェイクの社会的および法的影響と、それらの創造と検出の技術的基礎に対処する。
その結果、GenConViTは微調整後、精度(93.82%)と一般化能力において優れた性能を示した。
論文 参考訳(メタデータ) (2025-04-03T02:10:27Z) - CAE-Net: Generalized Deepfake Image Detection using Convolution and Attention Mechanisms with Spatial and Frequency Domain Features [0.6700983301090583]
クラス不均衡に対処し,アンサンブルベースのアーキテクチャであるemphCAE-Netを考案した。
私たちのアーキテクチャは、畳み込みと注目に基づくアンサンブルネットワークで構成されており、3つの異なるニューラルネットワークアーキテクチャを採用している。
EfficientNet B0アーキテクチャは90.79%、ConvNeXtアーキテクチャは89.49%、DeiTアーキテクチャは89.32%である。
論文 参考訳(メタデータ) (2025-02-15T06:02:11Z) - Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
ディープフェイク検出は、オンラインコンテンツへの信頼を損なうディープフェイクメディアの拡散と対比することを目的としている。
本稿では,BNN(Binary Neural Networks)を用いた画像に対する新しいディープフェイク検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T13:37:36Z) - Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive
Deep Learning Approach [0.0]
ディープフェイク技術は広く使われており、デジタルメディアの信頼性に関する深刻な懸念につながっている。
本研究は,映像中のディープフェイク顔を効果的に検出するために,リソース効率が高く透明なコスト感受性深層学習法を用いている。
論文 参考訳(メタデータ) (2023-12-17T14:57:10Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は,詳細な分類問題としてディープフェイク検出を定式化し,それに対する新たなきめ細かな解を提案する。
本手法は, 背景雑音を効果的に抑制し, 様々なスケールの識別特徴を学習することにより, 微妙で一般化可能な特徴を学習し, 深度検出を行う。
論文 参考訳(メタデータ) (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。