Explainable Anomaly Detection for Electric Vehicles Charging Stations
- URL: http://arxiv.org/abs/2507.15718v1
- Date: Mon, 21 Jul 2025 15:27:48 GMT
- Title: Explainable Anomaly Detection for Electric Vehicles Charging Stations
- Authors: Matteo Cederle, Andrea Mazzucco, Andrea Demartini, Eugenio Mazza, Eugenia Suriani, Federico Vitti, Gian Antonio Susto,
- Abstract summary: This study investigates unsupervised anomaly detection techniques for EV charging infrastructure.<n>It integrates eXplainable Artificial Intelligence techniques to enhance interpretability and uncover root causes of anomalies.<n>The efficacy of the proposed approach is evaluated in a real industrial case.
- Score: 3.5724617223939172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electric vehicles (EV) charging stations are one of the critical infrastructures needed to support the transition to renewable-energy-based mobility, but ensuring their reliability and efficiency requires effective anomaly detection to identify irregularities in charging behavior. However, in such a productive scenario, it is also crucial to determine the underlying cause behind the detected anomalies. To achieve this goal, this study investigates unsupervised anomaly detection techniques for EV charging infrastructure, integrating eXplainable Artificial Intelligence techniques to enhance interpretability and uncover root causes of anomalies. Using real-world sensors and charging session data, this work applies Isolation Forest to detect anomalies and employs the Depth-based Isolation Forest Feature Importance (DIFFI) method to identify the most important features contributing to such anomalies. The efficacy of the proposed approach is evaluated in a real industrial case.
Related papers
- Towards Explainable Anomaly Detection in Shared Mobility Systems [10.821699465856078]
This paper presents an interpretable anomaly detection framework that integrates multi-source data, including bike-sharing trip records, weather conditions, and public transit availability.<n>Results show that station-level analysis offers a robust understanding of anomalies, highlighting the influence of external factors such as adverse weather and limited transit availability.
arXiv Detail & Related papers (2025-07-21T14:06:42Z) - Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
Continual test-time adaptive object detection (CTTA-OD) aims to online adapt a source pre-trained detector to ever-changing environments.<n>Our motivation stems from the observation that not all learned source features are beneficial.<n>Our method achieves superior adaptation performance while reducing computational overhead by 12% in FLOPs.
arXiv Detail & Related papers (2025-06-03T05:27:56Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - XAI-guided Insulator Anomaly Detection for Imbalanced Datasets [11.215245485606369]
Power grids serve as a vital component in numerous industries, seamlessly delivering electrical energy to industrial processes and technologies.
Drones are increasingly deployed to inspect powerlines, resulting in a substantial stream of visual data which requires swift and accurate processing.
Deep learning methods have become widely popular for this task, proving to be a valuable asset in fault detection.
arXiv Detail & Related papers (2024-09-25T11:19:42Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A
focus-SVDD with Complex-Valued Auto-Encoder Approach [2.967390112155113]
We enhance the quality assurance of manufacturing utilizing FMCW radar as a non-destructive sensing modality.
We propose a novel anomaly detection methodology called focus Support Vector Data Description (focus-SVDD)
The effectiveness of the proposed method is demonstrated through its application to collected data.
arXiv Detail & Related papers (2023-06-19T09:54:34Z) - Artificial Intelligence based Anomaly Detection of Energy Consumption in
Buildings: A Review, Current Trends and New Perspectives [2.1874189959020423]
This paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence.
To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption.
arXiv Detail & Related papers (2020-10-09T13:28:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.