XAI-guided Insulator Anomaly Detection for Imbalanced Datasets
- URL: http://arxiv.org/abs/2409.16821v1
- Date: Wed, 25 Sep 2024 11:19:42 GMT
- Title: XAI-guided Insulator Anomaly Detection for Imbalanced Datasets
- Authors: Maximilian Andreas Hoefler, Karsten Mueller, Wojciech Samek,
- Abstract summary: Power grids serve as a vital component in numerous industries, seamlessly delivering electrical energy to industrial processes and technologies.
Drones are increasingly deployed to inspect powerlines, resulting in a substantial stream of visual data which requires swift and accurate processing.
Deep learning methods have become widely popular for this task, proving to be a valuable asset in fault detection.
- Score: 11.215245485606369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power grids serve as a vital component in numerous industries, seamlessly delivering electrical energy to industrial processes and technologies, making their safe and reliable operation indispensable. However, powerlines can be hard to inspect due to difficult terrain or harsh climatic conditions. Therefore, unmanned aerial vehicles are increasingly deployed to inspect powerlines, resulting in a substantial stream of visual data which requires swift and accurate processing. Deep learning methods have become widely popular for this task, proving to be a valuable asset in fault detection. In particular, the detection of insulator defects is crucial for predicting powerline failures, since their malfunction can lead to transmission disruptions. It is therefore of great interest to continuously maintain and rigorously inspect insulator components. In this work we propose a novel pipeline to tackle this task. We utilize state-of-the-art object detection to detect and subsequently classify individual insulator anomalies. Our approach addresses dataset challenges such as imbalance and motion-blurred images through a fine-tuning methodology which allows us to alter the classification focus of the model by increasing the classification accuracy of anomalous insulators. In addition, we employ explainable-AI tools for precise localization and explanation of anomalies. This proposed method contributes to the field of anomaly detection, particularly vision-based industrial inspection and predictive maintenance. We significantly improve defect detection accuracy by up to 13%, while also offering a detailed analysis of model mis-classifications and localization quality, showcasing the potential of our method on real-world data.
Related papers
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - MFL Data Preprocessing and CNN-based Oil Pipeline Defects Detection [0.0]
Application of computer vision for anomaly detection has been under attention in several industrial fields.
This work focuses on the research of the Magnetic Flux Leakage data and the preprocessing techniques.
In doing so, we exploited the recent convolutional neural network structures and proposed robust approaches.
arXiv Detail & Related papers (2023-09-30T10:37:12Z) - Object detection-based inspection of power line insulators: Incipient
fault detection in the low data-regime [0.0]
We formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks.
We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators.
The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage.
arXiv Detail & Related papers (2022-12-21T13:49:19Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.