論文の概要: Talking Like a Phisher: LLM-Based Attacks on Voice Phishing Classifiers
- arxiv url: http://arxiv.org/abs/2507.16291v1
- Date: Tue, 22 Jul 2025 07:26:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.003994
- Title: Talking Like a Phisher: LLM-Based Attacks on Voice Phishing Classifiers
- Title(参考訳): 音声フィッシング分類器のLSMによる攻撃
- Authors: Wenhao Li, Selvakumar Manickam, Yung-wey Chong, Shankar Karuppayah,
- Abstract要約: 大規模言語モデル (LLM) は、逆ビッシング文字を生成するために利用される。
我々は,迅速なエンジニアリングとセマンティックな難読化を利用する,系統的なアタックパイプラインを構築した。
LLM生成転写産物はMLに基づく分類器に対して実用的かつ統計的に有効であることが明らかとなった。
- 参考スコア(独自算出の注目度): 13.177607247367211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Voice phishing (vishing) remains a persistent threat in cybersecurity, exploiting human trust through persuasive speech. While machine learning (ML)-based classifiers have shown promise in detecting malicious call transcripts, they remain vulnerable to adversarial manipulations that preserve semantic content. In this study, we explore a novel attack vector where large language models (LLMs) are leveraged to generate adversarial vishing transcripts that evade detection while maintaining deceptive intent. We construct a systematic attack pipeline that employs prompt engineering and semantic obfuscation to transform real-world vishing scripts using four commercial LLMs. The generated transcripts are evaluated against multiple ML classifiers trained on a real-world Korean vishing dataset (KorCCViD) with statistical testing. Our experiments reveal that LLM-generated transcripts are both practically and statistically effective against ML-based classifiers. In particular, transcripts crafted by GPT-4o significantly reduce classifier accuracy (by up to 30.96%) while maintaining high semantic similarity, as measured by BERTScore. Moreover, these attacks are both time-efficient and cost-effective, with average generation times under 9 seconds and negligible financial cost per query. The results underscore the pressing need for more resilient vishing detection frameworks and highlight the imperative for LLM providers to enforce stronger safeguards against prompt misuse in adversarial social engineering contexts.
- Abstract(参考訳): ボイスフィッシング(Voice phishing)は、サイバーセキュリティにおける永続的な脅威であり、説得的なスピーチを通じて人間の信頼を搾取している。
機械学習(ML)ベースの分類器は、悪意のある呼び出し書き起こしを検知する可能性を示しているが、セマンティックコンテンツを保存する敵の操作には弱いままである。
本研究では,大規模言語モデル(LLM)を利用した新たな攻撃ベクトルを探索し,認識の意図を維持しつつ検出を回避できる逆方向のビッシング文字を生成する。
我々は,4つの商用LCMを用いて実世界のビッシングスクリプトを変換するために,迅速なエンジニアリングとセマンティック難読化を利用するシステムアタックパイプラインを構築した。
生成された書き起こしは、統計検査により、実世界の韓国の点滅データセット(KorCCViD)で訓練された複数のML分類器に対して評価される。
実験の結果, LLM 生成した転写産物はML ベース分類器に対して実用的かつ統計的に有効であることが判明した。
特に、GPT-4oによる転写は、BERTScoreが測定したように、高い意味的類似性を維持しながら、分類器の精度(最大30.96%)を著しく低下させる。
さらに、これらの攻撃は時間効率とコスト効率の両方で、平均生成時間は9秒未満で、クエリ毎の金銭的コストは無視できる。
この結果は、よりレジリエントなヴァイシング検出フレームワークの必要性を強調し、LLMプロバイダが対人的社会工学の文脈における迅速な誤用に対してより強力な安全を強制する義務を強調している。
関連論文リスト
- Phishing Detection in the Gen-AI Era: Quantized LLMs vs Classical Models [1.4999444543328293]
フィッシング攻撃はますます洗練され、高精度と計算効率のバランスをとる検知システムの必要性が強調されている。
本稿では、フィッシング検出のための従来の機械学習(ML)、ディープラーニング(DL)、および量子化された小パラメータ大規模言語モデル(LLM)の比較評価を行う。
現在,LLMはML法やDL法に比べて精度が低いが,文脈に基づく微妙なフィッシング手法を識別する可能性が強い。
論文 参考訳(メタデータ) (2025-07-10T04:01:52Z) - Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models [69.11679786018206]
Supervised Fine-tuning (SFT) は、大きな言語モデルと人間の意図を協調させ、ラベル付きタスク固有データでトレーニングする。
近年の研究では、悪意のある攻撃者が、有害な質問応答ペアにトリガーを埋め込むことで、これらのモデルにバックドアを注入できることが示されている。
脱獄性LLMに対する新しいクリーンデータバックドアアタックを提案する。
論文 参考訳(メタデータ) (2025-05-23T08:13:59Z) - Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors [65.27124213266491]
テキスト検出を効果的に欺く訓練不要な方法である textbfContrastive textbfParaphrase textbfAttack (CoPA) を提案する。
CoPAは、大規模言語モデルによって生成される人間のような分布とは対照的に、補助的な機械的な単語分布を構築している。
我々の理論的分析は、提案された攻撃の優越性を示唆している。
論文 参考訳(メタデータ) (2025-05-21T10:08:39Z) - Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System [2.0257616108612373]
大規模言語モデルは、敵の攻撃、操作プロンプト、悪意のある入力のエンコードに弱い。
本研究は,LSMが敵対的あるいは悪意的な入力を自力で認識し,フィルタリングし,防御することのできる,ユニークな防御パラダイムを提案する。
論文 参考訳(メタデータ) (2025-05-02T14:42:26Z) - Debate-Driven Multi-Agent LLMs for Phishing Email Detection [0.0]
エージェント間の偽りの議論をシミュレートしてフィッシングメールを検出する多エージェント大規模言語モデル(LLM)を提案する。
提案手法では,2つの LLM エージェントを用いて,最終判断を代弁する判断エージェントを用いて,分類課題の論拠を提示する。
結果は、議論の構造自体が、余分なプロンプト戦略を伴わずに正確な決定を下すのに十分であることを示している。
論文 参考訳(メタデータ) (2025-03-27T23:18:14Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
論文 参考訳(メタデータ) (2024-11-21T06:20:29Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
適応型大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
提案するSEMANTICSMOOTHは,与えられた入力プロンプトのセマンティック変換されたコピーの予測を集約するスムージングベースのディフェンスである。
論文 参考訳(メタデータ) (2024-02-25T20:36:03Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Is LLM-as-a-Judge Robust? Investigating Universal Adversarial Attacks on Zero-shot LLM Assessment [8.948475969696075]
LLM(Large Language Models)は、筆記試験やベンチマークシステムなどの実世界の状況で使用される強力なゼロショットアセスメントである。
本研究では,LLMを判断し,膨らませたスコアを判断するために,短い普遍的対数句を欺くことができることを示す。
判定-LLMは,絶対スコアリングに使用する場合,これらの攻撃に対して有意に感受性が高いことが判明した。
論文 参考訳(メタデータ) (2024-02-21T18:55:20Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。