論文の概要: LLM-Driven Collaborative Model for Untangling Commits via Explicit and Implicit Dependency Reasoning
- arxiv url: http://arxiv.org/abs/2507.16395v1
- Date: Tue, 22 Jul 2025 09:42:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.05044
- Title: LLM-Driven Collaborative Model for Untangling Commits via Explicit and Implicit Dependency Reasoning
- Title(参考訳): LLM-Driven Collaborative Model for Untangling Commit via Explicit and Implicit Dependency Reasoning
- Authors: Bo Hou, Xin Tan, Kai Zheng, Fang Liu, Yinghao Zhu, Li Zhang,
- Abstract要約: コミット回避のための新しいコラボレーティブコンサルテーションフレームワークであるColaUntangleを提案する。
ColaUntangleは、LLM(Large Language Model)駆動エージェントをマルチエージェントアーキテクチャに統合する。
我々は,マルチバージョンプログラム依存グラフ(delta-PDG)を構築し,エージェントが記号深度と意味深度の両方でコード関係を推論できるようにする。
- 参考スコア(独自算出の注目度): 20.147009997147798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomic commits, each of which addresses a single development concern, are a best practice in software development. However, developers frequently produce tangled commits that mix unrelated changes due to practical constraints or unclear boundaries, negatively impacting code review and maintenance. Although prior commit untangling approaches: rule-based, feature-based, or graph-based, have made progress, they often rely on shallow signals and fail to distinguish between explicit dependencies (e.g., control/data flow) and implicit ones (e.g., semantic or conceptual relationships). In this paper, we propose ColaUntangle, a new collaborative consultation framework for commit untangling that models both explicit and implicit dependencies among code changes. ColaUntangle integrates Large Language Model (LLM)-driven agents in a multi-agent architecture: one agent specializes in explicit dependencies, another in implicit ones, and a reviewer agent synthesizes their perspectives through iterative consultation. To capture explicit and implicit contextual information, we construct multi-version Program Dependency Graphs (delta-PDG), enabling agents to reason over code relationships with both symbolic and semantic depth. We evaluate ColaUntangle on two widely-used datasets (1,612 C# and 14k Java tangled commits). Experimental results show that ColaUntangle outperforms the best-performing baseline, achieving an improvement of 44% on the C# dataset and 100% on the Java dataset. These findings highlight the potential of LLM-based collaborative frameworks for advancing automated commit untangling tasks.
- Abstract(参考訳): ひとつの開発問題に対処するアトミックコミットは、ソフトウェア開発におけるベストプラクティスです。
しかし、実践的な制約や境界の不明確さによって無関係な変更が混在し、コードレビューやメンテナンスに悪影響を及ぼす、絡み合ったコミットがしばしば発生する。
ルールベース、フィーチャーベース、グラフベースといった以前のコミット回避アプローチは進歩しているが、浅い信号に依存し、明示的な依存関係(コントロール/データフローなど)と暗黙的な(セマンティクスや概念的な関係など)を区別できないことが多い。
本稿では,コード変更間の明示的依存関係と暗黙的依存関係の両方をモデル化するコミットアンハングリングのための新しいコラボレーティングフレームワークであるColaUntangleを提案する。
ColaUntangleは、LLM(Large Language Model)駆動のエージェントをマルチエージェントアーキテクチャに統合する。
暗黙的・暗黙的な文脈情報を取得するために,プログラム依存グラフ(delta-PDG)を構築した。
広く使われている2つのデータセット(1,612 C#と14k Java tangledコミット)上でColaUntangleを評価する。
ColaUntangleは、C#データセットで44%、Javaデータセットで100%改善され、最高のパフォーマンスのベースラインを上回っている。
これらの結果は、自動コミット回避タスクを前進させるLLMベースのコラボレーティブフレームワークの可能性を強調している。
関連論文リスト
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
評価と結果報酬のための正確で堅牢な軽量検証モデルであるCompassVerifierを開発した。
数学、知識、多種多様な推論タスクにまたがる多分野の能力を示し、様々な答えの型を処理する能力を示す。
我々は,複数のデータソースから収集したモデル出力からなるVerifierBenchベンチマークを導入し,メタエラーパターンを手動で解析してCompassVerifierを強化する。
論文 参考訳(メタデータ) (2025-08-05T17:55:24Z) - Data Dependency Inference for Industrial Code Generation Based on UML Sequence Diagrams [31.902404948282925]
本稿では,API2Depという新しいステップバイステップコード生成フレームワークを提案する。
まず、サービス指向アーキテクチャに適した拡張Unified Modeling Language (UML) APIダイアグラムを紹介します。
次に、データフローの重要な役割を認識し、専用のデータ依存推論タスクを導入する。
論文 参考訳(メタデータ) (2025-08-05T12:28:23Z) - SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving [90.32201622392137]
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs)。
従来の静的ベンチマークとは異なり、SwingArenaはLLMをイテレーションとして組み合わせて、テストケースを作成し、継続的インテグレーション(CI)パイプラインを通じてパッチを検証するパッチとレビュアーを生成することで、ソフトウェアのコラボレーションプロセスをモデル化する。
論文 参考訳(メタデータ) (2025-05-29T18:28:02Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [49.170195362149386]
既存のコード生成方法はシードデータとしてコードスニペットを使用する。
階層的なコード機能を中心に展開する,新しい機能ツリーベースの合成フレームワークを提案する。
我々のフレームワークは、生成されたコードの複雑さを正確に制御し、関数レベルの操作からマルチファイルのシナリオまで幅広い機能を実現する。
論文 参考訳(メタデータ) (2025-01-08T18:58:15Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - AgentRE: An Agent-Based Framework for Navigating Complex Information Landscapes in Relation Extraction [10.65417796726349]
複雑なシナリオにおける関係抽出(RE)は、多種多様な関係型や単一の文内のエンティティ間のあいまいな関係のような課題に直面します。
本稿では,複雑なシナリオにおいてREを実現するために,大規模言語モデルの可能性を完全に活用するエージェントベースのREフレームワークであるAgentREを提案する。
論文 参考訳(メタデータ) (2024-09-03T12:53:05Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
本稿ではレポジトリレベルのコード生成を評価するために設計された新しいベンチマークであるRepoExecを紹介する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
論文 参考訳(メタデータ) (2024-02-17T02:07:49Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
大規模言語モデル(LLM)は、コード生成において顕著な能力を示した。
しかし、単一の試みで正しいソリューションを生成することは依然として課題である。
本稿では,MPSC(Multi-Perspective Self-Consistency)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T14:23:26Z) - Delving into Commit-Issue Correlation to Enhance Commit Message
Generation Models [13.605167159285374]
コミットメッセージ生成は、自動化されたソフトウェアエンジニアリングにおいて難しいタスクである。
ツールとは,コミットとイシューの相関関係をモデルのトレーニングフェーズに導入する,新たなパラダイムだ。
その結果,元モデルと比較して,ツール強化モデルの性能は大幅に向上した。
論文 参考訳(メタデータ) (2023-07-31T20:35:00Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
本稿では,既存のDocREモデルの根本原因について検討する。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
4つのデータセットに対する実験結果から,提案手法は生成型DocREモデルの性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-28T11:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。