Estimating Treatment Effects with Independent Component Analysis
- URL: http://arxiv.org/abs/2507.16467v1
- Date: Tue, 22 Jul 2025 11:16:23 GMT
- Title: Estimating Treatment Effects with Independent Component Analysis
- Authors: Patrik Reizinger, Lester Mackey, Wieland Brendel, Rahul Krishnan,
- Abstract summary: We show that Independent Component Analysis (ICA) can be used for causal effect estimation in the partially linear regression (PLR) model.<n>We find that linear ICA can accurately estimate multiple treatment effects even in the presence of Gaussian confounders or nonlinear nuisance.
- Score: 30.83679633039883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of causal inference has developed a variety of methods to accurately estimate treatment effects in the presence of nuisance. Meanwhile, the field of identifiability theory has developed methods like Independent Component Analysis (ICA) to identify latent sources and mixing weights from data. While these two research communities have developed largely independently, they aim to achieve similar goals: the accurate and sample-efficient estimation of model parameters. In the partially linear regression (PLR) setting, Mackey et al. (2018) recently found that estimation consistency can be improved with non-Gaussian treatment noise. Non-Gaussianity is also a crucial assumption for identifying latent factors in ICA. We provide the first theoretical and empirical insights into this connection, showing that ICA can be used for causal effect estimation in the PLR model. Surprisingly, we find that linear ICA can accurately estimate multiple treatment effects even in the presence of Gaussian confounders or nonlinear nuisance.
Related papers
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction [40.96453902709292]
We propose pretraining strategies that leverage a phenomenon in real-world applications.<n>In medicine, components of the same biological signaling pathways frequently influence both baseline risk and treatment response.<n>We use this structure to incorporate side information and develop models that can exploit synergies between risk prediction and causal effect estimation.
arXiv Detail & Related papers (2025-05-01T05:12:14Z) - Black Box Causal Inference: Effect Estimation via Meta Prediction [56.277798874118425]
We frame causal inference as a dataset-level prediction problem, offloading algorithm design to the learning process.<n>We introduce, called black box causal inference (BBCI), builds estimators in a black-box manner by learning to predict causal effects from sampled dataset-effect pairs.<n>We demonstrate accurate estimation of average treatment effects (ATEs) and conditional average treatment effects (CATEs) with BBCI across several causal inference problems.
arXiv Detail & Related papers (2025-03-07T23:43:19Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Uncertainty Quantification in Heterogeneous Treatment Effect Estimation
with Gaussian-Process-Based Partially Linear Model [2.1212179660694104]
Estimating heterogeneous treatment effects across individuals has attracted growing attention as a statistical tool for performing critical decision-making.
We propose a Bayesian inference framework that quantifies the uncertainty in treatment effect estimation to support decision-making in a relatively small sample size setting.
arXiv Detail & Related papers (2023-12-16T12:42:28Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
We develop novel one-step and targeted minimum loss-based estimators for both the average treatment effect and the average treatment effect on the treated under front-door assumptions.<n>Our estimators are built on multiple parameterizations of the observed data distribution, including approaches that avoid mediator density entirely.<n>We show how these constraints can be leveraged to improve the efficiency of causal effect estimators.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Identification and multiply robust estimation in causal mediation analysis across principal strata [7.801213477601286]
We consider assessing causal mediation in the presence of a post-treatment event.
We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference.
arXiv Detail & Related papers (2023-04-20T00:39:20Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.