Survival Modeling from Whole Slide Images via Patch-Level Graph Clustering and Mixture Density Experts
- URL: http://arxiv.org/abs/2507.16476v1
- Date: Tue, 22 Jul 2025 11:32:36 GMT
- Title: Survival Modeling from Whole Slide Images via Patch-Level Graph Clustering and Mixture Density Experts
- Authors: Ardhendu Sekhar, Vasu Soni, Keshav Aske, Garima Jain, Pranav Jeevan, Amit Sethi,
- Abstract summary: We introduce a modular framework for predicting cancer-specific survival from whole slide pathology images (WSIs)<n>To tackle large size of WSIs, we use dynamic patch selection via quantile-based thresholding for isolating prognostically informative tissue regions.<n>Thirdly, we use attention mechanisms that model both intra- and inter-cluster relationships to contextualize local features.
- Score: 3.6260816942800975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a modular framework for predicting cancer-specific survival from whole slide pathology images (WSIs) that significantly improves upon the state-of-the-art accuracy. Our method integrating four key components. Firstly, to tackle large size of WSIs, we use dynamic patch selection via quantile-based thresholding for isolating prognostically informative tissue regions. Secondly, we use graph-guided k-means clustering to capture phenotype-level heterogeneity through spatial and morphological coherence. Thirdly, we use attention mechanisms that model both intra- and inter-cluster relationships to contextualize local features within global spatial relations between various types of tissue compartments. Finally, we use an expert-guided mixture density modeling for estimating complex survival distributions using Gaussian mixture models. The proposed model achieves a concordance index of $0.712 \pm 0.028$ and Brier score of $0.254 \pm 0.018$ on TCGA-KIRC (renal cancer), and a concordance index of $0.645 \pm 0.017$ and Brier score of $0.281 \pm 0.031$ on TCGA-LUAD (lung adenocarcinoma). These results are significantly better than the state-of-art and demonstrate predictive potential of the proposed method across diverse cancer types.
Related papers
- Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.<n>This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis [8.01395073111961]
We introduce a novel family of models termed Generative Cellular Automata (GeCA)
GeCAs are evaluated as an effective augmentation tool for retinal disease classification across two imaging modalities: Fundus and Optical Coherence Tomography ( OCT)
In the context of OCT imaging, where data is scarce and the distribution of classes is inherently skewed, GeCA significantly boosts the performance of 11 different ophthalmological conditions.
arXiv Detail & Related papers (2024-07-03T11:26:09Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - An End-to-End Breast Tumour Classification Model Using Context-Based
Patch Modelling- A BiLSTM Approach for Image Classification [19.594639581421422]
We have tried to integrate this relationship along with feature-based correlation among the extracted patches from the particular tumorous region.
We trained and tested our model on two datasets, microscopy images and WSI tumour regions.
We found out that BiLSTMs with CNN features have performed much better in modelling patches into an end-to-end Image classification network.
arXiv Detail & Related papers (2021-06-05T10:43:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
"Multiscale-Decoder Network (MED-Net)" provides pixel-wise labeling into classes of patterns in a quantitative manner.
We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions.
arXiv Detail & Related papers (2020-01-03T22:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.