論文の概要: AI for Better UX in Computer-Aided Engineering: Is Academia Catching Up with Industry Demands? A Multivocal Literature Review
- arxiv url: http://arxiv.org/abs/2507.16586v1
- Date: Tue, 22 Jul 2025 13:39:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.138792
- Title: AI for Better UX in Computer-Aided Engineering: Is Academia Catching Up with Industry Demands? A Multivocal Literature Review
- Title(参考訳): コンピュータ支援工学におけるUX向上のためのAI - 学界は産業需要に追いつくのか? - マルチボーカル文献レビュー
- Authors: Choro Ulan Uulu, Mikhail Kulyabin, Layan Etaiwi, Nuno Miguel Martins Pacheco, Jan Joosten, Kerstin Röse, Filippos Petridis, Jan Bosch, Helena Holmström Olsson,
- Abstract要約: Computer-Aided Engineering (CAE)は、シミュレーションの専門家が複雑なモデルを最適化することを可能にするが、効率とアクセシビリティを制限するユーザエクスペリエンス(UX)の課題に直面している。
人工知能(AI)はCAEプロセスを強化する可能性を実証しているが、これらの分野とUXに焦点を当てた研究はいまだに断片化されている。
本稿では,CAEソフトウェアにおけるAIのUX向上に関する多言語文献レビュー(MLR)について,学術研究と産業実装の両面で検討する。
- 参考スコア(独自算出の注目度): 3.5213888068272183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-Aided Engineering (CAE) enables simulation experts to optimize complex models, but faces challenges in user experience (UX) that limit efficiency and accessibility. While artificial intelligence (AI) has demonstrated potential to enhance CAE processes, research integrating these fields with a focus on UX remains fragmented. This paper presents a multivocal literature review (MLR) examining how AI enhances UX in CAE software across both academic research and industry implementations. Our analysis reveals significant gaps between academic explorations and industry applications, with companies actively implementing LLMs, adaptive UIs, and recommender systems while academic research focuses primarily on technical capabilities without UX validation. Key findings demonstrate opportunities in AI-powered guidance, adaptive interfaces, and workflow automation that remain underexplored in current research. By mapping the intersection of these domains, this study provides a foundation for future work to address the identified research gaps and advance the integration of AI to improve CAE user experience.
- Abstract(参考訳): Computer-Aided Engineering (CAE)は、シミュレーションの専門家が複雑なモデルを最適化することを可能にするが、効率とアクセシビリティを制限するユーザエクスペリエンス(UX)の課題に直面している。
人工知能(AI)はCAEプロセスを強化する可能性を実証しているが、これらの分野とUXに焦点を当てた研究はいまだに断片化されている。
本稿では,CAEソフトウェアにおけるAIのUX向上に関する多言語文献レビュー(MLR)について,学術研究と産業実装の両面で検討する。
我々の分析では、学術的な調査と産業アプリケーションの間に大きなギャップがあり、企業は積極的にLLM、適応UI、レコメンデーションシステムを実装している一方、学術的な研究は主にUX検証なしの技術機能に焦点を当てている。
主要な発見は、AIによるガイダンス、適応インターフェース、そして現在の研究で未調査のワークフロー自動化の機会を示している。
これらの領域の交わりをマッピングすることにより、この研究は、特定された研究ギャップに対処し、CAEユーザエクスペリエンスを改善するためにAIの統合を進めるための、将来の研究の基盤を提供する。
関連論文リスト
- The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
AIによるピアレビューは、緊急の研究とインフラの優先事項になるべきだ、と私たちは主張する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
論文 参考訳(メタデータ) (2025-06-09T18:37:14Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
人工知能(AI)と機械学習(ML)は様々な産業に大きな影響を与えている。
ソフトウェア開発ライフサイクル(SDLC)の重要な部分であるソフトウェアテストは、ソフトウェア製品の品質と信頼性を保証する。
本稿では、既存の文献をレビューし、現在のツールや技術を分析し、ケーススタディを提示することで、ソフトウェアテストにおけるAIとMLの役割について考察する。
論文 参考訳(メタデータ) (2024-09-04T13:25:13Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
ディープラーニングとエッジコンピューティングの進歩により、VADは大きな進歩を遂げた。
この記事では、NSVADの初心者向けの包括的なチュートリアルを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Bridging the Gap: A Study of AI-based Vulnerability Management between Industry and Academia [4.4037442949276455]
人工知能(AI)の最近の研究進歩は、自動化されたソフトウェア脆弱性管理に有望な結果をもたらした。
業界は、AIベースのテクニックをセキュリティ脆弱性管理ワークフローに統合することに関して、非常に慎重で選択的だ。
我々は、産業の期待をよりよく理解し、AIベースのセキュリティ脆弱性研究の実践的ユーザビリティを改善し、産業とアカデミックの相乗効果を推し進めるための将来の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-03T19:00:50Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
本稿では,ソフトウェアアプリケーションにおける性能ギャップ分析と提案のための概念的フレームワークPerfDetectiveAIを紹介する。
現代の機械学習(ML)と人工知能(AI)技術は、PerfDetectiveAIでパフォーマンス測定を監視し、ソフトウェアアプリケーションにおけるパフォーマンス不足の領域を特定するために使用されている。
論文 参考訳(メタデータ) (2023-06-11T02:53:04Z) - A Mini Review on the utilization of Reinforcement Learning with OPC UA [0.9208007322096533]
強化学習(Reinforcement Learning, RL)は、ロボット工学、自然言語処理、ゲームプレイといった様々な分野に応用された強力な機械学習パラダイムである。
この可能性を完全に活用する鍵は、既存の産業システムへのRLのシームレスな統合である。
この研究は、このギャップを埋めるために、両方の技術の技術的な概要を簡潔に提供し、半発掘的な文献レビューを実施している。
論文 参考訳(メタデータ) (2023-05-24T13:03:48Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。