論文の概要: Bridging the Gap: A Study of AI-based Vulnerability Management between Industry and Academia
- arxiv url: http://arxiv.org/abs/2405.02435v1
- Date: Fri, 3 May 2024 19:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 20:00:04.538455
- Title: Bridging the Gap: A Study of AI-based Vulnerability Management between Industry and Academia
- Title(参考訳): ギャップを埋める:産業と学界のAIによる脆弱性管理に関する研究
- Authors: Shengye Wan, Joshua Saxe, Craig Gomes, Sahana Chennabasappa, Avilash Rath, Kun Sun, Xinda Wang,
- Abstract要約: 人工知能(AI)の最近の研究進歩は、自動化されたソフトウェア脆弱性管理に有望な結果をもたらした。
業界は、AIベースのテクニックをセキュリティ脆弱性管理ワークフローに統合することに関して、非常に慎重で選択的だ。
我々は、産業の期待をよりよく理解し、AIベースのセキュリティ脆弱性研究の実践的ユーザビリティを改善し、産業とアカデミックの相乗効果を推し進めるための将来の方向性を提案する。
- 参考スコア(独自算出の注目度): 4.4037442949276455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research advances in Artificial Intelligence (AI) have yielded promising results for automated software vulnerability management. AI-based models are reported to greatly outperform traditional static analysis tools, indicating a substantial workload relief for security engineers. However, the industry remains very cautious and selective about integrating AI-based techniques into their security vulnerability management workflow. To understand the reasons, we conducted a discussion-based study, anchored in the authors' extensive industrial experience and keen observations, to uncover the gap between research and practice in this field. We empirically identified three main barriers preventing the industry from adopting academic models, namely, complicated requirements of scalability and prioritization, limited customization flexibility, and unclear financial implications. Meanwhile, research works are significantly impacted by the lack of extensive real-world security data and expertise. We proposed a set of future directions to help better understand industry expectations, improve the practical usability of AI-based security vulnerability research, and drive a synergistic relationship between industry and academia.
- Abstract(参考訳): 人工知能(AI)の最近の研究進歩は、自動化されたソフトウェア脆弱性管理に有望な結果をもたらした。
AIベースのモデルは、従来の静的解析ツールを大幅に上回っていると報告されており、セキュリティエンジニアにとってかなりの負荷軽減が図られている。
しかし、業界は、AIベースのテクニックをセキュリティ脆弱性管理ワークフローに統合することに非常に慎重で選択的だ。
これらの理由を解明するために,著者の広範な産業経験と鋭い観察に根ざした議論に基づく研究を行い,この分野における研究と実践のギャップを明らかにする。
すなわち、スケーラビリティと優先順位付けの複雑な要件、カスタマイズの柔軟性の制限、そして不明確な財政的影響である。
一方、研究は、広範囲の現実世界のセキュリティデータと専門知識の欠如によって大きな影響を受けている。
我々は、産業の期待をよりよく理解し、AIベースのセキュリティ脆弱性研究の実践的ユーザビリティを改善し、産業とアカデミックの相乗効果を推し進めるための将来の方向性を提案しました。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Integrative Approaches in Cybersecurity and AI [0.0]
組織がデータを保護し、分析し、活用する方法に革命をもたらす可能性を秘めている重要なトレンド、課題、将来の方向性を特定します。
私たちの発見は、AI駆動の自動化、リアルタイム脅威検出、高度なデータ分析を取り入れて、よりレジリエンスで適応的なセキュリティアーキテクチャを構築するための、学際的な戦略の必要性を強調しています。
論文 参考訳(メタデータ) (2024-08-12T01:37:06Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Vulnerability Detection in Smart Contracts: A Comprehensive Survey [10.076412566428756]
本研究では、スマートコントラクトにおける脆弱性の検出と緩和を改善する機械学習技術の可能性を検討する。
2018年から2023年にかけて、IEEE、ACM、ScienceDirect、Scopus、Google Scholarといったデータベースから88の記事を分析しました。
その結果、KNN、RF、DT、XG-Boost、SVMといった古典的な機械学習技術は、脆弱性検出において静的ツールよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-08T11:51:15Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
本稿では,ESGフレームワークの活性化におけるAIの必要性と影響を明らかにするために,産業環境を調査した。
調査では、分析能力、リスク評価、顧客エンゲージメント、報告精度など、ESGの主要な3つの柱にまたがるAIアプリケーションを分類した。
この論文は、ESG関連の銀行プロセスにおけるAI展開の倫理的側面を強調し、責任と持続可能なAIの衝動についても論じている。
論文 参考訳(メタデータ) (2024-02-03T02:14:47Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。