論文の概要: Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
- arxiv url: http://arxiv.org/abs/2507.16641v1
- Date: Tue, 22 Jul 2025 14:39:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.159036
- Title: Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
- Title(参考訳): 効率的な量子回路合成のためのハイブリッドリワード駆動強化学習
- Authors: Sara Giordano, Kornikar Sen, Miguel A. Martin-Delgado,
- Abstract要約: 量子回路の効率的な合成のための強化学習フレームワークが導入された。
このフレームワークは、ターゲット状態に向かってエージェントを誘導する静的なドメインインフォームド報酬と、カスタマイズ可能な動的ペナルティを組み合わせたものだ。
最大7キュービットのグラフ状態準備タスクのベンチマークを行い、アルゴリズムが最小深度回路を常に発見できることを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the NISQ era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension. The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. By leveraging sparse matrix representations and state-space discretization, the method enables scalable navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set for arbitrary quantum states, it still produces minimal depth circuits, highlighting the algorithm's robustness and adaptability. The results confirm that this RL-driven approach efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.
- Abstract(参考訳): NISQ時代と将来のフォールトトレラント量子コンピューティングにおける中心的な課題に対処するため、特定のターゲット量子状態を固定初期状態から生成する量子回路の効率的な合成のために強化学習(RL)フレームワークが導入された。
このアプローチは、離散化された量子状態空間内でのアクションシーケンスに基づく表付きQ-ラーニングを利用して、空間次元の指数的成長を効果的に管理する。
このフレームワークは、ターゲット状態に向かってエージェントを誘導する静的なドメインインフォームド報酬と、ゲートの混雑や冗長な状態修正といった非効率な回路構造を阻止するカスタマイズ可能な動的ペナルティを組み合わせたハイブリッド報酬機構を導入している。
スパース行列表現と状態空間の離散化を利用して、計算オーバーヘッドを最小限に抑えながら高次元環境のスケーラブルなナビゲーションを可能にする。
最大7キュービットのグラフ状態準備タスクのベンチマークを行い、最適化ゲート数で最小深度回路を常に発見することを示した。
さらに、フレームワークを任意の量子状態のための普遍ゲートセットに拡張すると、最小の深さ回路が生成され、アルゴリズムの堅牢性と適応性が強調される。
その結果、このRL駆動のアプローチは、複雑な量子状態空間を効率的に探索し、準最適量子回路を合成し、量子回路最適化のための資源効率の良い基礎を提供することを確認した。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - CutQAS: Topology-aware quantum circuit cutting via reinforcement learning [0.0]
量子回路切断と量子アーキテクチャ探索(QAS)を統合して量子化学シミュレーションを強化するフレームワークであるCutQASを提案する。
まず、RLエージェントが最適回路構造を特定するために可能な全てのトポロジを探索し、次いで第2のRLエージェントが最適な回路切断を決定することにより選択したトポロジを洗練し、制約のあるハードウェア上での効率的な実行を保証する。
論文 参考訳(メタデータ) (2025-04-05T13:13:50Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
低次エネルギー状態の抽出のための削減部分空間を反復的に構築するために,対称性保存コスト関数に基づく変動戦略を提案する。
概念実証として, 基底状態エネルギーと電荷ギャップの両方を対象とし, 提案アルゴリズムをH4鎖とリング上で検証した。
論文 参考訳(メタデータ) (2024-11-25T20:33:47Z) - Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
この研究は、効率的な量子回路のコンパイルとマッピングのための新しい学習ベースのアプローチを導入することにより、スケーラブルな量子コンピューティングシステムの進歩に寄与する。
本研究では,Deep Reinforcement Learning (DRL) 手法を応用して,特定のマルチコアアーキテクチャのための学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T12:09:11Z) - Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning [1.7087507417780985]
我々は、トラップイオンコンピューティングにおいて、関連する量子回路のサイズを大幅に削減できることを示す。
私たちのフレームワークは、未知のユニタリプロセスの再生を目標とする実験的な設定にも適用できます。
論文 参考訳(メタデータ) (2023-07-12T14:55:28Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
量子デバイスで物理的に実現可能な低深さ量子回路を開発することが不可欠である。
我々は,最適なアンサッツを動的に調整できるアンサッツ構成プロトコルを開発した。
アンザッツの構成は、エネルギーソートと演算子の可換性事前スクリーニングによって並列量子アーキテクチャで実行される可能性がある。
論文 参考訳(メタデータ) (2023-02-07T11:22:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
本研究は,同種LDEを解くための効率的な量子アルゴリズムを構築するために,量子振幅減衰演算を資源として利用する新しい手法を提案する。
このようなオープンな量子系にインスパイアされた回路は、非干渉法で解の実際の指数項を構成することができることを示す。
論文 参考訳(メタデータ) (2021-11-10T11:25:32Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。