Finding Dori: Memorization in Text-to-Image Diffusion Models Is Less Local Than Assumed
- URL: http://arxiv.org/abs/2507.16880v1
- Date: Tue, 22 Jul 2025 15:02:38 GMT
- Title: Finding Dori: Memorization in Text-to-Image Diffusion Models Is Less Local Than Assumed
- Authors: Antoni Kowalczuk, Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, Franziska Boenisch,
- Abstract summary: Concerns about data privacy and intellectual property remain due to their potential to inadvertently replicate training data.<n>Recent mitigation efforts have focused on identifying and pruning weights responsible for triggering replication.<n>We demonstrate that even after pruning, minor adjustments to text embeddings of input prompts are sufficient to re-trigger data replication.
- Score: 26.985672667560717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models (DMs) have achieved remarkable success in image generation. However, concerns about data privacy and intellectual property remain due to their potential to inadvertently memorize and replicate training data. Recent mitigation efforts have focused on identifying and pruning weights responsible for triggering replication, based on the assumption that memorization can be localized. Our research assesses the robustness of these pruning-based approaches. We demonstrate that even after pruning, minor adjustments to text embeddings of input prompts are sufficient to re-trigger data replication, highlighting the fragility of these defenses. Furthermore, we challenge the fundamental assumption of memorization locality, by showing that replication can be triggered from diverse locations within the text embedding space, and follows different paths in the model. Our findings indicate that existing mitigation strategies are insufficient and underscore the need for methods that truly remove memorized content, rather than attempting to suppress its retrieval. As a first step in this direction, we introduce a novel adversarial fine-tuning method that iteratively searches for replication triggers and updates the model to increase robustness. Through our research, we provide fresh insights into the nature of memorization in text-to-image DMs and a foundation for building more trustworthy and compliant generative AI.
Related papers
- CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models [58.58208005178676]
We propose CopyJudge, a novel automated infringement identification framework.<n>We employ an abstraction-filtration-comparison test framework to assess the likelihood of infringement.<n>We introduce a general LVLM-based mitigation strategy that automatically optimize infringing prompts.
arXiv Detail & Related papers (2025-02-21T08:09:07Z) - LoyalDiffusion: A Diffusion Model Guarding Against Data Replication [6.818344768093927]
Diffusion models can replicate training data, particularly when the training data includes confidential information.<n>We propose a replication-aware U-Net architecture that incorporates information transfer blocks into skip connections that are less essential for image quality.<n>Experiments demonstrate that LoyalDiffusion outperforms the state-of-the-art replication mitigation method achieving a 48.63% reduction in replication while maintaining comparable image quality.
arXiv Detail & Related papers (2024-12-02T04:41:30Z) - Exploring Local Memorization in Diffusion Models via Bright Ending Attention [62.979954692036685]
"bright ending" (BE) anomaly in text-to-image diffusion models prone to memorizing training images.<n>We propose a simple yet effective method to integrate BE into existing frameworks.
arXiv Detail & Related papers (2024-10-29T02:16:01Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Embedding Space Selection for Detecting Memorization and Fingerprinting in Generative Models [45.83830252441126]
Generative Adversarial Networks (GANs) and Diffusion Models have become cornerstone technologies, driving innovation in diverse fields from art creation to healthcare.
Despite their potential, these models face the significant challenge of data memorization, which poses risks to privacy and the integrity of generated content.
We study memorization scores calculated from encoder layer embeddings, which involves measuring distances between samples in the embedding spaces.
arXiv Detail & Related papers (2024-07-30T19:52:49Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.<n>Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.<n>We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.<n>We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.<n>We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Repetition In Repetition Out: Towards Understanding Neural Text
Degeneration from the Data Perspective [91.14291142262262]
This work presents a straightforward and fundamental explanation from the data perspective.
Our preliminary investigation reveals a strong correlation between the degeneration issue and the presence of repetitions in training data.
Our experiments reveal that penalizing the repetitions in training data remains critical even when considering larger model sizes and instruction tuning.
arXiv Detail & Related papers (2023-10-16T09:35:42Z) - Decoupling Knowledge from Memorization: Retrieval-augmented Prompt
Learning [113.58691755215663]
We develop RetroPrompt to help a model strike a balance between generalization and memorization.
In contrast with vanilla prompt learning, RetroPrompt constructs an open-book knowledge-store from training instances.
Extensive experiments demonstrate that RetroPrompt can obtain better performance in both few-shot and zero-shot settings.
arXiv Detail & Related papers (2022-05-29T16:07:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.