Many-body delocalization with a two-dimensional 70-qubit superconducting quantum simulator
- URL: http://arxiv.org/abs/2507.16882v1
- Date: Tue, 22 Jul 2025 16:02:05 GMT
- Title: Many-body delocalization with a two-dimensional 70-qubit superconducting quantum simulator
- Authors: Tian-Ming Li, Zheng-Hang Sun, Yun-Hao Shi, Zhen-Ting Bao, Yong-Yi Wang, Jia-Chi Zhang, Yu Liu, Cheng-Lin Deng, Yi-Han Yu, Zheng-He Liu, Chi-Tong Chen, Li Li, Hao Li, Hao-Tian Liu, Si-Yun Zhou, Zhen-Yu Peng, Yan-Jun Liu, Ziting Wang, Yue-Shan Xu, Kui Zhao, Yang He, Da'er Feng, Jia-Cheng Song, Cai-Ping Fang, Junrui Deng, Mingyu Xu, Yu-Tao Chen, Bozhen zhou, Gui-Han Liang, Zhong-Cheng Xiang, Guangming Xue, Dongning Zheng, Kaixuan Huang, Zheng-An Wang, Haifeng Yu, Piotr Sierant, Kai Xu, Heng Fan,
- Abstract summary: Quantum many-body systems with sufficiently strong disorder can exhibit a non-equilibrium phenomenon, known as the many-body localization (MBL)<n>We experimentally explore the robustness of the MBL regime in controlled finite-size 2D systems.<n>Our results are consistent with the avalanche theory that predicts the instability of MBL regime beyond one spatial dimension.
- Score: 27.359197838452367
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum many-body systems with sufficiently strong disorder can exhibit a non-equilibrium phenomenon, known as the many-body localization (MBL), which is distinct from conventional thermalization. While the MBL regime has been extensively studied in one dimension, its existence in higher dimensions remains elusive, challenged by the avalanche instability. Here, using a 70-qubit two-dimensional (2D) superconducting quantum simulator, we experimentally explore the robustness of the MBL regime in controlled finite-size 2D systems. We observe that the decay of imbalance becomes more pronounced with increasing system sizes, scaling up from 21, 42 to 70 qubits, with a relatively large disorder strength, and for the first time, provide an evidence for the many-body delocalization in 2D disordered systems. Our experimental results are consistent with the avalanche theory that predicts the instability of MBL regime beyond one spatial dimension. This work establishes a scalable platform for probing high-dimensional non-equilibrium phases of matter and their finite-size effects using superconducting quantum circuits.
Related papers
- Observation of many-body coherence in quasi-one-dimensional attractive Bose gases [2.023140069605251]
Macroscopic coherence is an important feature of quantum many-body systems exhibiting collective behaviors.<n>Here, we experimentally study the first- and second-order coherence of degenerate quasi-one-dimensional (1D) Bose gases quenched from repulsive to modulationally unstable interaction regimes.<n>The resulting dynamics reveals phase-coherent density wave evolutions arising from the interplay between noise-amplified density modulations and dispersive shock waves of broad interest within nonlinear physics.
arXiv Detail & Related papers (2025-06-16T15:23:20Z) - Onset of Quantum Chaos and Ergoditicy in Spin Systems with Highly Degenerate Hilbert Spaces [0.0]
We show that in systems with highly degenerate energy spectra, such as the 2D transverse-field Ising model (2DTFIM) in the strong-field limit, quantum chaos can emerge in finite systems for arbitrary small perturbations.<n>We study the ensuing transition to ergodicity in a family of models that includes the 2DTFIM.
arXiv Detail & Related papers (2025-02-24T19:24:45Z) - Observation of disorder-free localization using a (2+1)D lattice gauge theory on a quantum processor [118.01172048932149]
Disorder-induced phenomena in quantum many-body systems pose significant challenges for analytical methods and numerical simulations.<n>We investigate quantum circuits in tunable states to superpositions over all disorder configurations.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Universal semiclassical dynamics in disordered two-dimensional systems [0.0]
We analyze the dynamics of interacting spinless fermions propagating on disordered 1D and 2D lattices.
We find for both spatial dimensions that the imbalance exhibits a universal dependence on the rescaled time $t/xi_W$, where in 2D the time-scale $xi_W$ follows a stretched-exponential dependence on disorder strength.
arXiv Detail & Related papers (2024-09-19T17:59:00Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Supersymmetric reshaping and higher-dimensional rearrangement of
photonic lattices [68.8204255655161]
We build two-dimensional (2D) systems with spectra identical to that of one-dimensional (1D) Jx lattices.
While exhibiting different dynamics, these 2D systems retain the key imaging and state transfer properties of the 1D Jx lattice.
Our method extends to other systems with separable spectra, facilitates experimental fabrication, and may increase robustness to fabrication imperfections in large-scale photonic circuits.
arXiv Detail & Related papers (2022-09-26T16:56:41Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Stark many-body localization on a superconducting quantum processor [10.67740744008533]
We build a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model.
Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers.
arXiv Detail & Related papers (2020-11-27T18:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.