論文の概要: From Cracks to Crooks: YouTube as a Vector for Malware Distribution
- arxiv url: http://arxiv.org/abs/2507.16996v1
- Date: Tue, 22 Jul 2025 20:08:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.758276
- Title: From Cracks to Crooks: YouTube as a Vector for Malware Distribution
- Title(参考訳): クラックからクルックへ:YouTubeはマルウェア配布のためのベクター
- Authors: Iman Vakilinia,
- Abstract要約: 本稿では、サイバー犯罪者がYouTubeを利用してマルウェアを拡散する方法について検討する。
フリーソフトウェアやゲーム不正を促進するキャンペーンに焦点を当てている。
自動検出システムを回避するために、YouTubeの多言語メタデータ機能を悪用する新しい回避テクニックを提示している。
- 参考スコア(独自算出の注目度): 2.3931689873603603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With billions of users and an immense volume of daily uploads, YouTube has become an attractive target for cybercriminals aiming to leverage its vast audience. The platform's openness and trustworthiness provide an ideal environment for deceptive campaigns that can operate under the radar of conventional security tools. This paper explores how cybercriminals exploit YouTube to disseminate malware, focusing on campaigns that promote free software or game cheats. It discusses deceptive video demonstrations and the techniques behind malware delivery. Additionally, the paper presents a new evasion technique that abuses YouTube's multilingual metadata capabilities to circumvent automated detection systems. Findings indicate that this method is increasingly being used in recent malicious videos to avoid detection and removal.
- Abstract(参考訳): 何十億ものユーザーと毎日アップロードされているYouTubeは、その膨大なオーディエンスを活用しようとするサイバー犯罪者にとって魅力的なターゲットとなっている。
プラットフォームのオープン性と信頼性は,従来のセキュリティツールのレーダの下で運用可能な偽装キャンペーンの理想的な環境を提供する。
本稿では、サイバー犯罪者がYouTubeを悪用してマルウェアを拡散し、フリーソフトウェアやゲーム不正を助長するキャンペーンに焦点をあてる。
詐欺的なビデオデモと、マルウェアの配信の背後にある技術について論じる。
さらに,YouTubeの多言語メタデータ機能を悪用し,自動検出システムを回避する新たな回避手法を提案する。
発見は、この方法が、検出や削除を避けるために、最近の悪意あるビデオでますます使われていることを示している。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Obfuscated Memory Malware Detection [2.0618817976970103]
我々は、人工知能と機械学習が、特定の難読化マルウェアのマルウェアによって引き起こされるサイバー攻撃を検知し、軽減するためにどのように使用できるかを示す。
従来のランダムフォレストアルゴリズムを用いて,89.07%の精度で3種類の難読化マルウェアを検出するマルチクラス分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T06:39:15Z) - Users Feel Guilty: Measurement of Illegal Software Installation Guide Videos on YouTube for Malware Distribution [3.0664883500280986]
本研究では,人気ビデオ共有プラットフォームを活用した高度なマルウェア配布手法を紹介し,検討する。
この攻撃では、脅威アクターは、プレミアムソフトウェアとゲーム不正の無料バージョンを約束する偽のコンテンツを通じてマルウェアを配布する。
MalTubeはユーザーの罪悪感を悪用し、違法行為の可能性がある。
論文 参考訳(メタデータ) (2024-07-23T02:32:52Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Malicious or Benign? Towards Effective Content Moderation for Children's
Videos [1.0323063834827415]
本稿では,児童ビデオの自動コンテンツモデレーションに関する研究を促進するためのツールキットであるMalicious or Benignを紹介する。
1)ビデオのカスタマイズ可能なアノテーションツール,2)悪意のあるコンテンツのテストケースを検出するのが難しい新しいデータセット,3)最先端のビデオ分類モデルのベンチマークスイートを提案する。
論文 参考訳(メタデータ) (2023-05-24T20:33:38Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Look, Listen, and Attack: Backdoor Attacks Against Video Action
Recognition [53.720010650445516]
有毒ラベル画像のバックドア攻撃は静的かつ動的に2つの時間的拡張が可能であることを示す。
さらに、ビデオ領域におけるこの脆弱性の深刻さを強調するために、自然なビデオバックドアを探索する。
また,ビデオ行動認識モデルに対するマルチモーダル(オービジュアル)バックドアアタックを初めて検討した。
論文 参考訳(メタデータ) (2023-01-03T07:40:28Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
近年のディープラーニング、特に深層生成モデルの発展により、知覚的に説得力のある画像や動画を低コストで制作するための扉が開かれた。
本稿では,現在のメディアタンパリング検出手法を概観し,今後の研究の課題と動向について論じる。
論文 参考訳(メタデータ) (2022-12-12T02:54:08Z) - Efficient video integrity analysis through container characterization [77.45740041478743]
本稿では,ビデオ操作に使用するソフトウェアをコンテナベースで識別する手法を提案する。
提案手法は効率的かつ効果的であり,その決定の簡易な説明も可能である。
プリストインを改ざんされたビデオと区別し、編集ソフトを分類することで97.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-01-26T14:13:39Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to
Adversarial Examples [23.695497512694068]
ビデオ操作技術の最近の進歩は、偽ビデオの生成をこれまで以上にアクセスしやすくしている。
操作されたビデオは偽情報を燃やし、メディアの信頼を減らすことができる。
近年開発されたDeepfake検出方法は、AI生成のフェイクビデオと実際のビデオとを区別するために、ディープニューラルネットワーク(DNN)に依存している。
論文 参考訳(メタデータ) (2020-02-09T07:10:58Z) - Media Forensics and DeepFakes: an overview [12.333160116225445]
リアルメディアと合成メディアの境界は非常に薄くなっている。
ディープフェイクは選挙中に世論を操ったり、詐欺を犯したり、軽視したり、脅迫したりするのに使われる。
偽マルチメディアコンテンツを検出する自動化ツールが緊急に必要である。
論文 参考訳(メタデータ) (2020-01-18T00:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。