論文の概要: Shared Control of Holonomic Wheelchairs through Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2507.17055v1
- Date: Tue, 22 Jul 2025 22:31:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.792834
- Title: Shared Control of Holonomic Wheelchairs through Reinforcement Learning
- Title(参考訳): 強化学習によるホロノミック車椅子の共有制御
- Authors: Jannis Bähler, Diego Paez-Granados, Jorge Peña-Queralta,
- Abstract要約: 最先端の研究は、非ホロノミックロボットのナビゲーションの安全性を向上させるための共有制御の可能性を示した。
本稿では,2次元ユーザ入力と3次元モーション出力を併用した強化学習手法を提案する。
本手法は,車いすをスマートに配向し,良好なスムーズさや競争力のあるスムーズさを示すとともに,衝突のないナビゲーションを確実にすることを示す。
- 参考スコア(独自算出の注目度): 1.4970676989901233
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Smart electric wheelchairs can improve user experience by supporting the driver with shared control. State-of-the-art work showed the potential of shared control in improving safety in navigation for non-holonomic robots. However, for holonomic systems, current approaches often lead to unintuitive behavior for the user and fail to utilize the full potential of omnidirectional driving. Therefore, we propose a reinforcement learning-based method, which takes a 2D user input and outputs a 3D motion while ensuring user comfort and reducing cognitive load on the driver. Our approach is trained in Isaac Gym and tested in simulation in Gazebo. We compare different RL agent architectures and reward functions based on metrics considering cognitive load and user comfort. We show that our method ensures collision-free navigation while smartly orienting the wheelchair and showing better or competitive smoothness compared to a previous non-learning-based method. We further perform a sim-to-real transfer and demonstrate, to the best of our knowledge, the first real-world implementation of RL-based shared control for an omnidirectional mobility platform.
- Abstract(参考訳): スマート電動車椅子は、ドライバーを共有制御でサポートすることで、ユーザーエクスペリエンスを向上させることができる。
最先端の研究は、非ホロノミックロボットのナビゲーションの安全性を向上させるための共有制御の可能性を示した。
しかし、ホロノミックシステムでは、現在のアプローチはユーザにとって直感的ではなく、全方向駆動の可能性を最大限に活用できないことが多い。
そこで本研究では,2次元ユーザ入力を受信して3次元動作を出力し,運転者の快適性を確保し,認知負荷を低減させる強化学習手法を提案する。
私たちのアプローチはIsaac Gymでトレーニングされ、Gazeboでシミュレーションでテストされています。
認知負荷とユーザの快適さを考慮したメトリクスに基づいて,異なるRLエージェントアーキテクチャと報酬関数を比較した。
本手法は,車椅子をスマートに配置し,従来の非学習法と比較して,よりスムーズさや競争力のあるスムーズさを示すとともに,衝突のないナビゲーションを確実にすることを示す。
我々はさらに,全方向移動プラットフォームのためのRLベースの共有制御の世界初の実世界の実装である,我々の知る限りにおいて,シミュレート・トゥ・リアル・トランスファーを実施して実証する。
関連論文リスト
- A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry [0.0]
本研究では,車体前方移動動作を制御するハイウェイランプ機能について検討し,車体が進入する高速道路交通の流れとの衝突を最小限に抑える。
我々はこの問題に対してゲーム理論的マルチエージェント(MA)アプローチを採用し、深層強化学習(DRL)に基づくコントローラの利用について検討する。
本稿では,2台以上の車両(エージェント)の相互作用を研究することで既存の作業を拡張し,交通量やエゴカーを付加して道路シーンを体系的に拡張する。
論文 参考訳(メタデータ) (2024-11-21T21:23:46Z) - On-Board Vision-Language Models for Personalized Autonomous Vehicle Motion Control: System Design and Real-World Validation [17.085548386025412]
VLM(Vision-Language Models)は、パーソナライズドライビングのための有望なソリューションを提供する。
本稿では,低レイテンシなパーソナライズドライビング性能を実現する軽量で効果的なVLMフレームワークを提案する。
我々のシステムは、様々なシナリオで安全で快適でパーソナライズされた運転体験を提供する能力を示した。
論文 参考訳(メタデータ) (2024-11-17T23:20:37Z) - CarDreamer: Open-Source Learning Platform for World Model based Autonomous Driving [25.49856190295859]
世界モデルに基づく強化学習(RL)は,様々な環境の複雑な力学を学習し,予測することで,有望なアプローチとして現れてきた。
高度な運転環境において、そのようなアルゴリズムを訓練し、テストするためのアクセス可能なプラットフォームは存在しない。
私たちは、WMベースの自動運転アルゴリズムの開発に特化して設計された、オープンソースの学習プラットフォームであるCarDreamerを紹介します。
論文 参考訳(メタデータ) (2024-05-15T05:57:20Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Deep Reinforcement Learning-Based Mapless Crowd Navigation with
Perceived Risk of the Moving Crowd for Mobile Robots [0.0]
現在最先端のクラウドナビゲーションアプローチは、主に深層強化学習(DRL)に基づくものである。
本研究では,観測空間に衝突確率(CP)を組み込んで,移動する群衆の危険度をロボットに知覚する手法を提案する。
論文 参考訳(メタデータ) (2023-04-07T11:29:59Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
最も有望な方法はジェスチャーベースであり、追加のハンドヘルドハードウェアを必要としない。
最近の研究は、主に異なるロコモーションテクニックのユーザの好みとパフォーマンスに焦点を当てている。
本研究は,VRにおける手のジェスチャーに基づくロコモーションシステムへの適応の迅速さについて検討した。
論文 参考訳(メタデータ) (2022-06-16T10:44:16Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。