Quantum optical model of an artificial neuron
- URL: http://arxiv.org/abs/2507.17349v1
- Date: Wed, 23 Jul 2025 09:32:42 GMT
- Title: Quantum optical model of an artificial neuron
- Authors: Vivek Mehta, Utpal Roy,
- Abstract summary: We present two quantum circuit synthesis algorithms tailored for the realisation of the quantum neuron.<n>We propose a quantum optical variant of the qubit-based quantum neuron, which offers a reduction in quantum resource requirements.
- Score: 2.1408617023874443
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnini \emph{et al.} [\emph{Mach. Learn.: Sci. Technol. 1 (2020) 045008}] recently introduced a qubit-based model of an artificial neuron, along with its applications. The design of its quantum circuit is pivotal for effective implementation. In this context, we present two quantum circuit synthesis algorithms tailored for the realisation of the quantum neuron. Comprehensive circuit simulations are conducted, and the resulting performance is assessed using the circuit cost metric. Additionally, we propose a quantum optical variant of the qubit-based quantum neuron, which offers a reduction in quantum resource requirements. To substantiate this, we introduce a quantum optical circuit synthesis algorithm and validate its efficacy through numerical simulations of prototype models.
Related papers
- Optimal Quantum Circuit Design via Unitary Neural Networks [0.0]
We present an automated method for synthesizing the functionality of a quantum algorithm into a quantum circuit model representation.
We demonstrate that this trained model can effectively generate a quantum circuit model equivalent to the original algorithm.
arXiv Detail & Related papers (2024-08-23T16:41:15Z) - Stabilization and Dissipative Information Transfer of a Superconducting
Kerr-Cat Qubit [0.0]
We study the dissipative information transfer to a qubit model called Cat-Qubit.
This model is especially important for the dissipative-based version of the binary quantum classification.
Cat-Qubit architecture has the potential to easily implement activation-like functions in artificial neural networks.
arXiv Detail & Related papers (2023-07-23T11:28:52Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
We propose a framework that builds quantum neurons based on kernel machines.
We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space.
It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit.
arXiv Detail & Related papers (2022-02-25T04:57:41Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.