CAPRI-CT: Causal Analysis and Predictive Reasoning for Image Quality Optimization in Computed Tomography
- URL: http://arxiv.org/abs/2507.17420v1
- Date: Wed, 23 Jul 2025 11:23:02 GMT
- Title: CAPRI-CT: Causal Analysis and Predictive Reasoning for Image Quality Optimization in Computed Tomography
- Authors: Sneha George Gnanakalavathy, Hairil Abdul Razak, Robert Meertens, Jonathan E. Fieldsend, Xujiong Ye, Mohammed M. Abdelsamea,
- Abstract summary: CAPRI-CT is a causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging.<n>It integrates image data with acquisition metadata to model the underlying causal relationships that influence image quality.<n>It is trained and validated using an ensemble learning approach, achieving strong predictive performance.
- Score: 2.422970122886921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computed tomography (CT), achieving high image quality while minimizing radiation exposure remains a key clinical challenge. This paper presents CAPRI-CT, a novel causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging. CAPRI-CT integrates image data with acquisition metadata (such as tube voltage, tube current, and contrast agent types) to model the underlying causal relationships that influence image quality. An ensemble of Variational Autoencoders (VAEs) is employed to extract meaningful features and generate causal representations from observational data, including CT images and associated imaging parameters. These input features are fused to predict the Signal-to-Noise Ratio (SNR) and support counterfactual inference, enabling what-if simulations, such as changes in contrast agents (types and concentrations) or scan parameters. CAPRI-CT is trained and validated using an ensemble learning approach, achieving strong predictive performance. By facilitating both prediction and interpretability, CAPRI-CT provides actionable insights that could help radiologists and technicians design more efficient CT protocols without repeated physical scans. The source code and dataset are publicly available at https://github.com/SnehaGeorge22/capri-ct.
Related papers
- Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations [2.0934875997852096]
Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis.<n>We propose the use of implicit neural representations (INRs) for image quality assessment.<n>Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns.
arXiv Detail & Related papers (2025-08-07T09:00:06Z) - Initial Study On Improving Segmentation By Combining Preoperative CT And Intraoperative CBCT Using Synthetic Data [0.21847754147782888]
Cone-beam computed tomography (CBCT) can be used to facilitate computer-assisted interventions.<n>The availability of high quality, preoperative scans offers potential for improvements.<n>We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans.
arXiv Detail & Related papers (2024-12-03T09:08:38Z) - SinoSynth: A Physics-based Domain Randomization Approach for Generalizable CBCT Image Enhancement [19.059201978992064]
Cone Beam Computed Tomography (CBCT) finds diverse applications in medicine.
The susceptibility of CBCT images to noise and artifacts undermines both their usefulness and reliability.
We present Sino Synth, a physics-based degradation model that simulates various CBCT-specific artifacts to generate a diverse set of synthetic CBCT images.
arXiv Detail & Related papers (2024-09-27T00:22:02Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - Latent Diffusion Model for Medical Image Standardization and Enhancement [11.295078152769559]
DiffusionCT is a score-based DDPM model that transforms disparate non-standard distributions into a standardized form.
The architecture comprises a U-Net-based encoder-decoder, augmented by a DDPM model integrated at the bottleneck position.
Empirical tests on patient CT images indicate notable improvements in image standardization using DiffusionCT.
arXiv Detail & Related papers (2023-10-08T17:11:14Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.