論文の概要: Each to Their Own: Exploring the Optimal Embedding in RAG
- arxiv url: http://arxiv.org/abs/2507.17442v1
- Date: Wed, 23 Jul 2025 12:03:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.979161
- Title: Each to Their Own: Exploring the Optimal Embedding in RAG
- Title(参考訳): それぞれに - RAGの最適埋め込みを探る
- Authors: Shiting Chen, Zijian Zhao, Jinsong Chen,
- Abstract要約: Retrieval-Augmented Generationは、低コストでパラメータチューニングの最小限の労力で有名である。
複数の埋め込みモデルの利点を組み合わせることでRAGを強化する2つの手法を提案し,検討する。
Confident RAGは、異なる埋め込みモデルを使用して複数のレスポンスを生成し、次に、最も信頼度の高いレスポンスを選択する。
- 参考スコア(独自算出の注目度): 5.61623830061444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, as Large Language Models (LLMs) have fundamentally impacted various fields, the methods for incorporating up-to-date information into LLMs or adding external knowledge to construct domain-specific models have garnered wide attention. Retrieval-Augmented Generation (RAG), serving as an inference-time scaling method, is notable for its low cost and minimal effort for parameter tuning. However, due to heterogeneous training data and model architecture, the variant embedding models used in RAG exhibit different benefits across various areas, often leading to different similarity calculation results and, consequently, varying response quality from LLMs. To address this problem, we propose and examine two approaches to enhance RAG by combining the benefits of multiple embedding models, named Mixture-Embedding RAG and Confident RAG. Mixture-Embedding RAG simply sorts and selects retrievals from multiple embedding models based on standardized similarity; however, it does not outperform vanilla RAG. In contrast, Confident RAG generates responses multiple times using different embedding models and then selects the responses with the highest confidence level, demonstrating average improvements of approximately 10% and 5% over vanilla LLMs and RAG, respectively. The consistent results across different LLMs and embedding models indicate that Confident RAG is an efficient plug-and-play approach for various domains. We will release our code upon publication.
- Abstract(参考訳): 近年,Large Language Models (LLM) が様々な分野に根本的な影響を与えているため,LLMに最新情報を組み込んだり,ドメイン固有モデル構築に外部知識を追加する手法が注目されている。
Retrieval-Augmented Generation (RAG) は、推論時間スケーリングの手法として機能し、低コストかつ最小限のパラメータチューニングの取り組みで有名である。
しかし、不均一なトレーニングデータとモデルアーキテクチャにより、RAGで使用される変種埋め込みモデルは様々な領域で異なる利点を示し、しばしば類似性計算結果が異なり、結果としてLLMの応答品質が変化する。
この問題を解決するために,Mixture-Embedding RAGとConfident RAGという複数の埋め込みモデルの利点を組み合わせてRAGを強化する2つの手法を提案し,検討した。
Mixture-Embedding RAGは、標準化された類似性に基づく複数の埋め込みモデルからの検索を単純にソートして選択するが、バニラRAGより優れているわけではない。
対照的に、Confident RAGは異なる埋め込みモデルを用いて複数回反応を生成し、次に最も高い信頼度で反応を選択し、それぞれバニラLLMとRAGの約10%と5%の平均的な改善を示す。
異なるLLMおよび埋め込みモデル間の一貫性のある結果は、Confident RAGが様々なドメインに対する効率的なプラグアンドプレイアプローチであることを示している。
私たちは公開時にコードを公開します。
関連論文リスト
- RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation [45.679455112940175]
Retrieval-augmented Generation (RAG)は、推論時に取得した外部知識を統合することにより、大規模言語モデル(LLM)を強化する。
我々は,知識の混合を伴う大規模データストアであるMassiveDSを用いてRAGシステムを評価し,限界点を特定した。
論文 参考訳(メタデータ) (2025-07-26T20:57:24Z) - Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning [60.84901522792042]
Multimodal Retrieval-Augmented Generation (MRAG)は、マルチモーダル大言語モデル(MLLM)における幻覚の緩和を約束している。
進化する推論状態に基づいて知識をいつどこで取得するかを学習する新しいMRAGフレームワークであるR1を提案する。
R1-は多種多様なKBを適応的かつ効果的に利用でき、不要な検索を減らし、効率と精度を向上させる。
論文 参考訳(メタデータ) (2025-05-28T08:17:57Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.7225771305861]
本稿では,マルチモーダル大規模言語モデルの有効性を評価するためのベンチマークであるMulti-Modal Retrieval-Augmented Generation (M$2$RAG)を紹介する。
このベンチマークは、イメージキャプション、マルチモーダル質問応答、マルチモーダル事実検証、イメージリランクの4つのタスクで構成されている。
MLLMのコンテキスト利用能力を高めるため,マルチモーダル検索型インストラクションチューニング(MM-RAIT)も導入する。
論文 参考訳(メタデータ) (2025-02-24T16:25:25Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) は、外部リソースから知識を取得することで、Large Language Models (LLM) における幻覚を緩和する効果を証明している。
現在のアプローチでは、命令チューニングを使用してLLMを最適化し、検索した知識を活用する能力を改善している。
本稿では,異なるRAGモジュール間でデータ嗜好を整列させることでRAGシステムを訓練するDDR法を提案する。
論文 参考訳(メタデータ) (2024-10-17T12:53:29Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
大きな言語モデル(LLM)は、入力クエリから人間のようなテキストを理解し、生成する能力を持つ。
本研究では、この概念を、レトリーバル拡張生成(RAG)パイプライン内のLLMの統合に拡張する。
データ抽出と文脈理解における微調整がLLMの能力に与える影響を評価する。
論文 参考訳(メタデータ) (2024-06-17T04:35:17Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [18.581518952488093]
MRAG(Multi-Head RAG)は、マルチアスペクト文書を取得するための新しいスキームである。
MRAGは18RAGベースラインに対して設計上の優位性を示し,検索成功率の最大20%を実証的に改善した。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。