Symbiotic Agents: A Novel Paradigm for Trustworthy AGI-driven Networks
- URL: http://arxiv.org/abs/2507.17695v1
- Date: Wed, 23 Jul 2025 17:01:23 GMT
- Title: Symbiotic Agents: A Novel Paradigm for Trustworthy AGI-driven Networks
- Authors: Ilias Chatzistefanidis, Navid Nikaein,
- Abstract summary: Large Language Model (LLM)-based autonomous agents are expected to play a vital role in the evolution of 6G networks.<n>We introduce a novel agentic paradigm that combines LLMs real-time optimization algorithms towards Trustworthy AI.<n>We propose an end-to-end architecture for AGI networks and evaluate it on a 5G testbed capturing channel fluctuations from moving vehicles.
- Score: 2.5782420501870296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM)-based autonomous agents are expected to play a vital role in the evolution of 6G networks, by empowering real-time decision-making related to management and service provisioning to end-users. This shift facilitates the transition from a specialized intelligence approach, where artificial intelligence (AI) algorithms handle isolated tasks, to artificial general intelligence (AGI)-driven networks, where agents possess broader reasoning capabilities and can manage diverse network functions. In this paper, we introduce a novel agentic paradigm that combines LLMs with real-time optimization algorithms towards Trustworthy AI, defined as symbiotic agents. Optimizers at the LLM's input-level provide bounded uncertainty steering for numerically precise tasks, whereas output-level optimizers supervised by the LLM enable adaptive real-time control. We design and implement two novel agent types including: (i) Radio Access Network optimizers, and (ii) multi-agent negotiators for Service-Level Agreements (SLAs). We further propose an end-to-end architecture for AGI networks and evaluate it on a 5G testbed capturing channel fluctuations from moving vehicles. Results show that symbiotic agents reduce decision errors fivefold compared to standalone LLM-based agents, while smaller language models (SLM) achieve similar accuracy with a 99.9% reduction in GPU resource overhead and in near-real-time loops of 82 ms. A multi-agent demonstration for collaborative RAN on the real-world testbed highlights significant flexibility in service-level agreement and resource allocation, reducing RAN over-utilization by approximately 44%. Drawing on our findings and open-source implementations, we introduce the symbiotic paradigm as the foundation for next-generation, AGI-driven networks-systems designed to remain adaptable, efficient, and trustworthy even as LLMs advance.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
Artificial intelligence (AI) and machine learning (ML) models are rapidly permeating the 5G Radio Access Network (RAN)<n>These developments lay the foundation for AI-native transceivers as a key enabler for 6G.
arXiv Detail & Related papers (2025-07-24T16:04:59Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - Prompt-Tuned LLM-Augmented DRL for Dynamic O-RAN Network Slicing [5.62872273155603]
Large Language Models (LLMs) structure unorganized network feedback into meaningful latent representations.<n>In O-RAN slicing, concepts like SNR, power levels and throughput are semantically related.<n>We introduce a contextualization-based adaptation method that integrates learnable prompts into an LLM-augmented DRL framework.
arXiv Detail & Related papers (2025-05-31T14:12:56Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning [13.3347292702828]
This paper proposes a framework called Autonomous Reinforcement Coordination (ARC) for a SemCom-enabled SAGIN.<n>ARC decomposes orchestration into two tiers, utilizing LLMs for high-level planning and RL agents for low-level decision-making.
arXiv Detail & Related papers (2025-02-22T11:53:34Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.