Deep learning-aided inverse design of porous metamaterials
- URL: http://arxiv.org/abs/2507.17907v1
- Date: Wed, 23 Jul 2025 20:07:53 GMT
- Title: Deep learning-aided inverse design of porous metamaterials
- Authors: Phu Thien Nguyen, Yousef Heider, Dennis M. Kochmann, Fadi Aldakheel,
- Abstract summary: The ultimate aim of the study is to explore the inverse design of porous metamaterials using a deep learning-based generative framework.<n>We develop a property-variational autoencoder (pVAE), a variational autoencoder (VAE) augmented with a regressor, to generate structured metamaterials with tailored hydraulic properties.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ultimate aim of the study is to explore the inverse design of porous metamaterials using a deep learning-based generative framework. Specifically, we develop a property-variational autoencoder (pVAE), a variational autoencoder (VAE) augmented with a regressor, to generate structured metamaterials with tailored hydraulic properties, such as porosity and permeability. While this work uses the lattice Boltzmann method (LBM) to generate intrinsic permeability tensor data for limited porous microstructures, a convolutional neural network (CNN) is trained using a bottom-up approach to predict effective hydraulic properties. This significantly reduces the computational cost compared to direct LBM simulations. The pVAE framework is trained on two datasets: a synthetic dataset of artificial porous microstructures and CT-scan images of volume elements from real open-cell foams. The encoder-decoder architecture of the VAE captures key microstructural features, mapping them into a compact and interpretable latent space for efficient structure-property exploration. The study provides a detailed analysis and interpretation of the latent space, demonstrating its role in structure-property mapping, interpolation, and inverse design. This approach facilitates the generation of new metamaterials with desired properties. The datasets and codes used in this study will be made open-access to support further research.
Related papers
- RPCANet++: Deep Interpretable Robust PCA for Sparse Object Segmentation [51.37553739930992]
RPCANet++ is a sparse object segmentation framework that fuses the interpretability of RPCA with efficient deep architectures.<n>Our approach unfolds a relaxed RPCA model into a structured network comprising a Background Approximation Module (BAM), an Object Extraction Module (OEM) and an Image Restoration Module (IRM)<n>Experiments on diverse datasets demonstrate that RPCANet++ achieves state-of-the-art performance under various imaging scenarios.
arXiv Detail & Related papers (2025-08-06T08:19:37Z) - evoxels: A differentiable physics framework for voxel-based microstructure simulations [41.94295877935867]
Differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
arXiv Detail & Related papers (2025-07-29T12:29:15Z) - Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
This work introduces AMPTCR, a molecular surface representation that combines local quantum-derived scalar fields and custom topological descriptors within an aligned point cloud format.<n>For molecular weight, results confirm that AMPTCR encodes physically meaningful data, with a validation R2 of 0.87.<n>In the bacterial inhibition task, AMPTCR enables both classification and direct regression of E. coli inhibition values.
arXiv Detail & Related papers (2025-07-22T04:35:50Z) - Reduced-order structure-property linkages for stochastic metamaterials [0.0]
It is shown that a dataset as small as $0.61%$ of the entire dataset is sufficient to generate accurate and robust structure-property maps.<n>An uncertainty-based active learning framework is utilized to train a surrogate model with a significantly smaller number of data points compared to the original full dataset.
arXiv Detail & Related papers (2025-05-02T13:58:47Z) - Curiosity Driven Exploration to Optimize Structure-Property Learning in Microscopy [0.4711628883579317]
We present an alternative lightweight curiosity algorithm which actively samples regions with unexplored structure-property relations.<n>We show that the algorithm outperforms random sampling for predicting properties from structures, and provides a convenient tool for efficient mapping of structure-property relationships in materials science.
arXiv Detail & Related papers (2025-04-28T17:31:29Z) - A Materials Map Integrating Experimental and Computational Data via Graph-Based Machine Learning for Enhanced Materials Discovery [5.06756291053173]
Materials informatics (MI) is expected to significantly accelerate material development and discovery.<n>Data used in MI are derived from both computational and experimental studies.<n>In this study, we use the obtained datasets to construct materials maps, which visualize the relationships between material properties and structural features.
arXiv Detail & Related papers (2025-03-10T14:31:34Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Robust Model-Based Optimization for Challenging Fitness Landscapes [96.63655543085258]
Protein design involves optimization on a fitness landscape.
Leading methods are challenged by sparsity of high-fitness samples in the training set.
We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools.
We propose a new approach that uses a novel VAE as its search model to overcome the problem.
arXiv Detail & Related papers (2023-05-23T03:47:32Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning [0.0]
Liquid metals (LM) are embedded in an elastomer matrix to obtain soft composites with unique thermal, dielectric, and mechanical properties.
By linking the structure to the properties of these materials, it is possible to perform material design rationally.
arXiv Detail & Related papers (2022-07-24T06:02:26Z) - Interpretable Mixture of Experts [71.55701784196253]
Interpretable Mixture of Experts (IME) is an inherently-interpretable modeling framework.
IME is demonstrated to be more accurate than single interpretable models and perform comparably with existing state-of-the-art Deep Neural Networks (DNNs) in accuracy.
IME's explanations are compared to commonly-used post-hoc explanations methods through a user study.
arXiv Detail & Related papers (2022-06-05T06:40:15Z) - Adaptive Attribute and Structure Subspace Clustering Network [49.040136530379094]
We propose a novel self-expressiveness-based subspace clustering network.
We first consider an auto-encoder to represent input data samples.
Then, we construct a mixed signed and symmetric structure matrix to capture the local geometric structure underlying data.
We perform self-expressiveness on the constructed attribute structure and matrices to learn their affinity graphs.
arXiv Detail & Related papers (2021-09-28T14:00:57Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.