論文の概要: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
- arxiv url: http://arxiv.org/abs/2507.18112v1
- Date: Thu, 24 Jul 2025 05:51:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.024036
- Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
- Title(参考訳): テンソルネットワークを用いたMRI画像生成のための3次元DDPMのパラメータ効率の良い微調整
- Authors: Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun,
- Abstract要約: 3次元U-Netを用いた拡散確率モデル(DDPM)におけるパラメータ効率細調整(PEFT)の課題に対処する。
本研究では,3次元畳み込みバックボーンを有するDDPMを微調整するための新しいPEFT手法であるTenVOOを提案する。
この結果から, マルチスケール類似度指標(MS-SSIM)において, TenVOO が最先端の性能を達成することを示す。
- 参考スコア(独自算出の注目度): 23.30947697113457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo
- Abstract(参考訳): 磁気共鳴イメージング(MRI)画像生成における3次元(3次元) U-Net-based denoising diffusion probabilistic model(DDPM)に対するパラメータ効率細調整(PEFT)の課題に対処する。
その実用的重要性にもかかわらず、3次元畳み込み演算のパラメータ効率表現に関する研究は依然として限られている。
このギャップを埋めるために,3次元畳み込みバックボーンを持つDDPMを微調整する新しいPEFT法であるTenVOOを提案する。
テンソルネットワークモデリングを活用して、TenVOOは低次元テンソルを持つ3次元畳み込みカーネルを表現する。
我々は、英国バイオバンクの59,830T1強調脳MRIスキャンでトレーニングされたDDPMを微調整し、3つの下流脳MRIデータセット(ADNI, PPMI, BraTS2021)上でTenVOOを評価する。
本研究では,マルチスケール構造類似度指数測定(MS-SSIM)におけるtenVOOの最先端性能を実証し,既存の空間依存性の捕捉手法よりも優れた性能を示すとともに,モデルのトレーニング可能なパラメータの0.3%しか必要としないことを示した。
私たちのコードは、https://github.com/xiaovhua/tenvooで利用可能です。
関連論文リスト
- Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
現在の異常検出法は, 基準産業データより優れているが, 「正常」 と「異常」の定義の相違により, 医療データに苦慮している。
我々は,ImageNet上で事前学習し,MRIデータセットを2次元スライス特徴抽出器として微調整したモデルを用いたSimple Slice-based Network (SimpleSliceNet) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T17:20:56Z) - StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations [3.4453266252081645]
StoDIPは, 3次元MRFイメージングに基いて, 地上構造のないDeep Image Prior (DIP) 再構成を拡張した新しいアルゴリズムである。
健康なボランティアの脳全体をスキャンしたデータセットで、StoDIPは、質的にも質的にも、地道な再建ベースラインよりも優れたパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-08-05T10:32:06Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
3Dコンピュータグラフィックスでは、シーンのメモリ使用量の大部分がポリゴンとテクスチャによるものである。
N-BVHは3次元の任意の光線クエリに応答するように設計されたニューラル圧縮アーキテクチャである。
本手法は, 視認性, 深度, 外観特性を忠実に近似する。
論文 参考訳(メタデータ) (2024-05-25T13:54:34Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation [34.865695471451886]
E2ENet(Efficient to Efficient Network)と呼ばれる3次元医用画像分割モデルを提案する。
パラメトリックと計算効率の2つの設計が組み込まれている。
さまざまなリソース制約に対して、正確性と効率性のトレードオフを一貫して達成します。
論文 参考訳(メタデータ) (2023-12-07T22:13:37Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
本稿では,3次元CNNと3次元磁気LSTMを用いて,全4次元データから特徴を抽出できるエンドツーエンドアルゴリズムを提案する。
提案手法は,NYUサイトとUMサイトにおいて,F1スコア0.78,0.7の単一サイトにおいて,技術結果の状態を達成できることを示す。
論文 参考訳(メタデータ) (2020-02-14T11:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。