A Foundation Model for Massive MIMO Precoding with an Adaptive per-User Rate-Power Tradeoff
- URL: http://arxiv.org/abs/2507.18587v1
- Date: Thu, 24 Jul 2025 17:10:06 GMT
- Title: A Foundation Model for Massive MIMO Precoding with an Adaptive per-User Rate-Power Tradeoff
- Authors: Jérôme Emery, Ali Hasanzadeh Karkan, Jean-François Frigon, François Leduc-Primeau,
- Abstract summary: We propose a transformer-based foundation model for mMIMO precoding that seeks to minimize the energy consumption of the transmitter while dynamically adapting to per-user rate requirements.<n>At equal energy consumption, zero-shot deployment of the proposed foundation model significantly outperforms zero forcing, and approaches weighted minimum mean squared error performance with 8x less complexity.<n>Our work enables the implementation of DL-based solutions in practice by addressing challenges of data availability and training complexity.
- Score: 4.8310710966636545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) has emerged as a solution for precoding in massive multiple-input multiple-output (mMIMO) systems due to its capacity to learn the characteristics of the propagation environment. However, training such a model requires high-quality, local datasets at the deployment site, which are often difficult to collect. We propose a transformer-based foundation model for mMIMO precoding that seeks to minimize the energy consumption of the transmitter while dynamically adapting to per-user rate requirements. At equal energy consumption, zero-shot deployment of the proposed foundation model significantly outperforms zero forcing, and approaches weighted minimum mean squared error performance with 8x less complexity. To address model adaptation in data-scarce settings, we introduce a data augmentation method that finds training samples similar to the target distribution by computing the cosine similarity between the outputs of the pre-trained feature extractor. Our work enables the implementation of DL-based solutions in practice by addressing challenges of data availability and training complexity. Moreover, the ability to dynamically configure per-user rate requirements can be leveraged by higher level resource allocation and scheduling algorithms for greater control over energy efficiency, spectral efficiency and fairness.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - FedMHO: Heterogeneous One-Shot Federated Learning Towards Resource-Constrained Edge Devices [12.08958206272527]
Federated Learning (FL) is increasingly adopted in edge computing scenarios, where a large number of heterogeneous clients operate under constrained or sufficient resources.<n>One-shot FL has emerged as a promising approach to mitigate communication overhead, and model-heterogeneous FL solves the problem of diverse computing resources across clients.<n>We propose a novel FL framework named FedMHO, which leverages deep classification models on resource-sufficient clients and lightweight generative models on resource-constrained devices.
arXiv Detail & Related papers (2025-02-12T15:54:56Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.<n>Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Load Balancing in Federated Learning [3.2999744336237384]
Federated Learning (FL) is a decentralized machine learning framework that enables learning from data distributed across multiple remote devices.
This paper proposes a load metric for scheduling policies based on the Age of Information.
We establish the optimal parameters of the Markov chain model and validate our approach through simulations.
arXiv Detail & Related papers (2024-08-01T00:56:36Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.