論文の概要: Initial Steps in Integrating Large Reasoning and Action Models for Service Composition
- arxiv url: http://arxiv.org/abs/2507.18775v1
- Date: Thu, 24 Jul 2025 19:57:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.742392
- Title: Initial Steps in Integrating Large Reasoning and Action Models for Service Composition
- Title(参考訳): サービス構成のための大規模推論とアクションモデルの統合初期ステップ
- Authors: Ilche Georgievski, Marco Aiello,
- Abstract要約: サービス構成は、適応的でインテリジェントなソフトウェアシステムを構築する上で、依然として中心的な課題である。
本稿では,Large Reasoning Models (LRM) とLarge Action Models (LAM) の2つの新しいパラダイムの統合について検討する。
本稿では、自動サービス構成の進歩に向けた有望な方向性として、統合型LRM-LAMアーキテクチャフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service composition remains a central challenge in building adaptive and intelligent software systems, often constrained by limited reasoning capabilities or brittle execution mechanisms. This paper explores the integration of two emerging paradigms enabled by large language models: Large Reasoning Models (LRMs) and Large Action Models (LAMs). We argue that LRMs address the challenges of semantic reasoning and ecosystem complexity while LAMs excel in dynamic action execution and system interoperability. However, each paradigm has complementary limitations - LRMs lack grounded action capabilities, and LAMs often struggle with deep reasoning. We propose an integrated LRM-LAM architectural framework as a promising direction for advancing automated service composition. Such a system can reason about service requirements and constraints while dynamically executing workflows, thus bridging the gap between intention and execution. This integration has the potential to transform service composition into a fully automated, user-friendly process driven by high-level natural language intent.
- Abstract(参考訳): サービス構成は、適応的でインテリジェントなソフトウェアシステムを構築する上でも中心的な課題であり、しばしば限定的な推論能力や脆弱な実行メカニズムによって制約される。
本稿では,Large Reasoning Models (LRM) とLarge Action Models (LAM) の2つの新しいパラダイムの統合について検討する。
LRMはセマンティック推論とエコシステムの複雑さの課題に対処する一方、LAMは動的動作の実行とシステムの相互運用性に優れています。
しかし、それぞれのパラダイムには補完的な制限がある - LRMには基盤となるアクション能力がなく、LAMは深い推論に苦しむことが多い。
本稿では、自動サービス構成の進歩に向けた有望な方向性として、統合型LRM-LAMアーキテクチャフレームワークを提案する。
このようなシステムは、ワークフローを動的に実行しながら、サービス要件と制約を推論することで、意図と実行のギャップを埋めることができます。
この統合は、サービス構成を、ハイレベルな自然言語意図によって駆動される、完全に自動化され、ユーザフレンドリなプロセスに変換する可能性がある。
関連論文リスト
- Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [72.44384066166147]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)は、多様な領域にわたる複雑な問題を扱うための強力なソリューションとして登場した。
既存のアプローチは、事前に定義されたエージェントセットとハードコードされた相互作用構造を持つテンプレートグラフ修正パラダイムに依存しているため、基本的に制限されている。
協調グラフをスクラッチから構築することで、このパラダイムを運用する新しい自己回帰モデルであるARG-Designerを提案する。
論文 参考訳(メタデータ) (2025-07-24T09:17:41Z) - Aime: Towards Fully-Autonomous Multi-Agent Framework [13.494469496862534]
大規模言語モデル(LLM)を利用したマルチエージェントシステム(MAS)は、複雑で多面的な問題を解決するための強力なパラダイムとして浮上している。
これらのシステムのポテンシャルは、しばしば、臨界的な制限に悩まされる一般的なプラン・アンド・エグゼクティブ・フレームワークによって制約される。
本稿では、動的でリアクティブな計画と実行を通じてこれらの課題を克服するために設計された、新しいマルチエージェントフレームワークであるAimeを紹介する。
論文 参考訳(メタデータ) (2025-07-16T07:38:28Z) - EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
大規模言語モデル(LLM)を評価するためのEIFBENCH(Extremely Complex Instruction following Benchmark)を提案する。
EIFBENCHにはマルチタスクシナリオが含まれており、多様なタスクタイプを同時に総合的に評価することができる。
また,LLMのマルチタスクワークフローを正確に満たす能力を高めるために,セグメントポリシー最適化(SegPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-10T02:39:55Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
自動MAS設計のための自己進化型推論時間フレームワークMAS-ZEROを紹介する。
MAS-ZEROはメタレベルの設計を採用し、各問題インスタンスに適したMAS構成を反復的に生成し、評価し、洗練する。
論文 参考訳(メタデータ) (2025-05-21T00:56:09Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - Computational methods for Dynamic Answer Set Programming [0.0]
この研究は、動的ドメインを効果的に扱うためにAnswer Set Programming(ASP)を拡張することを目的としている。
動的、時間的、およびメートル法論理の概念をASP.NETに組み込むことで、複雑な動的問題をモデル化できる堅牢なシステムを開発する。
論文 参考訳(メタデータ) (2025-02-13T11:52:25Z) - Autonomous Deep Agent [0.7489814067742621]
Deep Agentは、複雑なマルチフェーズタスクを管理するために設計された高度な自律AIシステムである。
システムの基盤は階層型タスクDAGフレームワーク上に構築されています。
Deep Agentは、自己管理型AIシステムにおいて、新しいパラダイムを確立する。
論文 参考訳(メタデータ) (2025-02-10T21:46:54Z) - DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
既存のLLMエージェントシステムは、通常、各ステップで固定セットと事前定義されたセットからアクションを選択する。
動作を動的に生成・構成できるLLMエージェントフレームワークを提案する。
このフレームワークでは、汎用プログラミング言語で書かれたプログラムを生成し実行することで、エージェントが環境と対話する。
論文 参考訳(メタデータ) (2024-11-04T02:08:59Z) - MOSS: Enabling Code-Driven Evolution and Context Management for AI Agents [7.4159044558995335]
動的コンテキスト管理システムとコード生成を統合する新しいフレームワークであるMOSS(llM-oriented Operating System Simulation)を紹介する。
フレームワークの中核は、最小限の知識原則を強制するために、インバージョン・オブ・コントロールコンテナとデコレータを併用する。
我々は,このフレームワークがエージェント開発における効率性と能力をいかに向上させるかを示し,チューリング完全エージェントへの移行におけるその優位性を強調した。
論文 参考訳(メタデータ) (2024-09-24T14:30:21Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - LEGENT: Open Platform for Embodied Agents [60.71847900126832]
LEGENTはLarge Language Models (LLM) とLarge Multimodal Models (LMM) を用いたエンボディエージェントを開発するためのオープンでスケーラブルなプラットフォームである。
LEGENTはリッチでインタラクティブな3D環境を提供し、コミュニケーション可能でアクション可能なエージェントをユーザフレンドリーなインターフェースと組み合わせている。
実験では、EGENT生成データに基づいて訓練された胚性視覚言語モデルが、エンボディタスクにおいてGPT-4Vを超える。
論文 参考訳(メタデータ) (2024-04-28T16:50:12Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
本稿では,マルチエージェントシステムのパワーを活用した大規模言語モデル(LLM)の能力向上のための新しいフレームワークを提案する。
本フレームワークでは,複数の知的エージェントコンポーネントがそれぞれ特有な属性と役割を持つ協調環境を導入し,複雑なタスクをより効率的に効率的に処理する。
論文 参考訳(メタデータ) (2023-06-05T23:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。