論文の概要: Exploring molecular assembly as a biosignature using mass spectrometry and machine learning
- arxiv url: http://arxiv.org/abs/2507.19057v1
- Date: Fri, 25 Jul 2025 08:19:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.879874
- Title: Exploring molecular assembly as a biosignature using mass spectrometry and machine learning
- Title(参考訳): 質量分析と機械学習を用いたバイオシグナチャとしての分子組立の探索
- Authors: Lindsay A. Rutter, Abhishek Sharma, Ian Seet, David Obeh Alobo, An Goto, Leroy Cronin,
- Abstract要約: 理想的なバイオシグナチャは解釈可能で実験的に測定可能でなければならない。
分子組立は、進化によって生み出された物体を測定するために最近開発された手法であり、両方の基準を満たすことを示す。
我々は,分子組立を高精度に予測し,ベースラインモデルと比較して誤差を3倍に削減する機械学習モデルを開発した。
- 参考スコア(独自算出の注目度): 1.7952155197675588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular assembly offers a promising path to detect life beyond Earth, while minimizing assumptions based on terrestrial life. As mass spectrometers will be central to upcoming Solar System missions, predicting molecular assembly from their data without needing to elucidate unknown structures will be essential for unbiased life detection. An ideal agnostic biosignature must be interpretable and experimentally measurable. Here, we show that molecular assembly, a recently developed approach to measure objects that have been produced by evolution, satisfies both criteria. First, it is interpretable for life detection, as it reflects the assembly of molecules with their bonds as building blocks, in contrast to approaches that discount construction history. Second, it can be determined without structural elucidation, as it can be physically measured by mass spectrometry, a property that distinguishes it from other approaches that use structure-based information measures for molecular complexity. Whilst molecular assembly is directly measurable using mass spectrometry data, there are limits imposed by mission constraints. To address this, we developed a machine learning model that predicts molecular assembly with high accuracy, reducing error by three-fold compared to baseline models. Simulated data shows that even small instrumental inconsistencies can double model error, emphasizing the need for standardization. These results suggest that standardized mass spectrometry databases could enable accurate molecular assembly prediction, without structural elucidation, providing a proof-of-concept for future astrobiology missions.
- Abstract(参考訳): 分子集合体は地球外生命を検知する有望な経路を提供すると同時に、地球上の生命に基づく仮定を最小化する。
質量分析計は今後の太陽系のミッションの中心となるため、未知の構造を解明することなく、データから分子集合を予測することは、不偏の生命検出に不可欠である。
理想的なアグノスティックバイオシグナチャは、解釈可能で実験的に測定可能でなければならない。
分子組立は、進化によって生み出された物体を測る手法として最近開発されたもので、両者の基準を満たすものである。
第一に、構造の歴史を縮小するアプローチとは対照的に、結合を構成要素として分子の集合を反映しているため、生命検出には解釈可能である。
第二に、物質分析によって物理的に測定できるため、構造に基づく情報測定を分子の複雑さに用いた他の手法と区別することができる。
分子組立は質量分析データを用いて直接測定可能であるが、ミッション制約によって課される制限がある。
そこで我々は,分子組立を高精度に予測し,ベースラインモデルと比較して誤差を3倍に削減する機械学習モデルを開発した。
シミュレーションデータから、小さな機器の不整合でもモデルエラーが2倍になり、標準化の必要性が強調される。
これらの結果は、標準質量分析データベースが構造解明なしに正確な分子組立予測を可能にし、将来の宇宙生物学のミッションに対する概念実証を可能にすることを示唆している。
関連論文リスト
- Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMAは、分子を中心とした一般的な知識を把握した大きな分子言語モデルである。
分子理解を改善するために,分子エンコーダの相補的な情報を統合するモジュールを提案する。
論文 参考訳(メタデータ) (2025-02-19T05:49:10Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
本稿では,DiffMSを提案する。DiffMS,式制限付きエンコーダ・デコーダ生成ネットワークは,このタスクにおける最先端性能を実現する。
遅延埋め込みと分子構造をブリッジするロバストデコーダを開発するために,フィンガー構造対による拡散デコーダの事前訓練を行う。
確立されたベンチマーク実験により、DiffMSはデノボ分子生成における既存のモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables [0.0]
化学関連データポイントの取得を導くために,不確実性を集合変数(CV)として活用する手法を提案する。
このアプローチでは、1つのモデルからのガウス混合モデルに基づく不確実性測定を、偏りのある分子動力学シミュレーションのためのCVとして採用する。
論文 参考訳(メタデータ) (2024-02-06T06:42:51Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
本稿では,仮説学習に基づく化学空間上の能動的学習のための新しいアプローチを提案する。
我々は,データサブセットの小さな部分集合に基づいて,関心の構造と機能の関係性に関する仮説を構築した。
このアプローチでは、SISSOやアクティブラーニングといったシンボリックレグレッションメソッドの要素をひとつのフレームワークに統合する。
論文 参考訳(メタデータ) (2023-01-06T14:22:43Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
物理科学では、限られた訓練データは将来の観測データを適切に特徴づけることができない。
特に外挿を依頼される場合、モデルが不確実性を適切に示すことは重要である。
火星探査機キュリオシティに搭載されたChemCam装置のレーザ誘起分解分光データに関する方法論を実証した。
論文 参考訳(メタデータ) (2022-12-14T23:57:46Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using
Graph Transformers [3.2951121243459522]
タンデム質量スペクトルは、分子に関する重要な構造情報を提供する断片化パターンをキャプチャする。
70年以上にわたり、スペクトル予測はこの分野において重要な課題であり続けている。
我々はタンデム質量スペクトルを正確に予測する新しいモデルMassFormerを提案する。
論文 参考訳(メタデータ) (2021-11-08T20:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。