Efficient Lines Detection for Robot Soccer
- URL: http://arxiv.org/abs/2507.19469v1
- Date: Fri, 25 Jul 2025 17:54:51 GMT
- Title: Efficient Lines Detection for Robot Soccer
- Authors: João G. Melo, João P. Mafaldo, Edna Barros,
- Abstract summary: This paper presents a method for detecting soccer field lines using the ELSED algorithm, extended with a classification step that analyzes RGB color transitions to identify lines belonging to the field.<n>Our approach achieves accuracy comparable to a state-of-the-art deep learning model while offering higher processing speed, making it well-suited for real-time applications on low-power robotic platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-localization is essential in robot soccer, where accurate detection of visual field features, such as lines and boundaries, is critical for reliable pose estimation. This paper presents a lightweight and efficient method for detecting soccer field lines using the ELSED algorithm, extended with a classification step that analyzes RGB color transitions to identify lines belonging to the field. We introduce a pipeline based on Particle Swarm Optimization (PSO) for threshold calibration to optimize detection performance, requiring only a small number of annotated samples. Our approach achieves accuracy comparable to a state-of-the-art deep learning model while offering higher processing speed, making it well-suited for real-time applications on low-power robotic platforms.
Related papers
- Self-supervised Feature Extraction for Enhanced Ball Detection on Soccer Robots [2.111102681327218]
We present a self-supervised learning framework for domain-adaptive feature extraction to enhance ball detection performance.<n>The proposed approach leverages a general-purpose pretrained model to generate pseudo-labels, which are then used in a suite of self-supervised pretext tasks.<n> Experimental results demonstrate that the proposed pipeline outperforms baseline models in terms of accuracy, F1 score, and IoU, while also exhibiting faster convergence.
arXiv Detail & Related papers (2025-06-20T08:21:34Z) - Reinforcement Learning Approach to Optimizing Profilometric Sensor Trajectories for Surface Inspection [0.0]
High-precision surface defect detection in manufacturing is essential for ensuring quality control.
Laser triangulation profil sensors are key to this process.
This paper presents a novel approach to optimize inspection trajectories for profilometric sensors.
arXiv Detail & Related papers (2024-09-05T11:20:12Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Edge-Enabled Real-time Railway Track Segmentation [0.0]
We propose an edge-enabled real-time railway track segmentation algorithm.
It is optimized to be suitable for edge applications by optimizing the network structure and quantizing the model after training.
Experimental results demonstrate that our enhanced algorithm achieves an accuracy level of 83.3%.
arXiv Detail & Related papers (2024-01-21T13:45:52Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - Lite-FPN for Keypoint-based Monocular 3D Object Detection [18.03406686769539]
Keypoint-based monocular 3D object detection has made tremendous progress and achieved great speed-accuracy trade-off.
We propose a sort of lightweight feature pyramid network called Lite-FPN to achieve multi-scale feature fusion.
Our proposed method achieves significantly higher accuracy and frame rate at the same time.
arXiv Detail & Related papers (2021-05-01T14:44:31Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.