Exemplar Med-DETR: Toward Generalized and Robust Lesion Detection in Mammogram Images and beyond
- URL: http://arxiv.org/abs/2507.19621v2
- Date: Wed, 30 Jul 2025 21:00:32 GMT
- Title: Exemplar Med-DETR: Toward Generalized and Robust Lesion Detection in Mammogram Images and beyond
- Authors: Sheethal Bhat, Bogdan Georgescu, Adarsh Bhandary Panambur, Mathias Zinnen, Tri-Thien Nguyen, Awais Mansoor, Karim Khalifa Elbarbary, Siming Bayer, Florin-Cristian Ghesu, Sasa Grbic, Andreas Maier,
- Abstract summary: We introduce Exemplar Med-DETR, a novel multi-modal contrastive detector that enables feature-based detection.<n>On Vietnamese dense breast mammograms, we attain an mAP of 0.7 for mass detection and 0.55 for calcifications, yielding an absolute improvement of 16 percentage points.<n>For chest X-rays and angiography, we achieve an mAP of 0.25 for mass and 0.37 for stenosis detection, improving results by 4 and 7 percentage points, respectively.
- Score: 3.437009428325929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting abnormalities in medical images poses unique challenges due to differences in feature representations and the intricate relationship between anatomical structures and abnormalities. This is especially evident in mammography, where dense breast tissue can obscure lesions, complicating radiological interpretation. Despite leveraging anatomical and semantic context, existing detection methods struggle to learn effective class-specific features, limiting their applicability across different tasks and imaging modalities. In this work, we introduce Exemplar Med-DETR, a novel multi-modal contrastive detector that enables feature-based detection. It employs cross-attention with inherently derived, intuitive class-specific exemplar features and is trained with an iterative strategy. We achieve state-of-the-art performance across three distinct imaging modalities from four public datasets. On Vietnamese dense breast mammograms, we attain an mAP of 0.7 for mass detection and 0.55 for calcifications, yielding an absolute improvement of 16 percentage points. Additionally, a radiologist-supported evaluation of 100 mammograms from an out-of-distribution Chinese cohort demonstrates a twofold gain in lesion detection performance. For chest X-rays and angiography, we achieve an mAP of 0.25 for mass and 0.37 for stenosis detection, improving results by 4 and 7 percentage points, respectively. These results highlight the potential of our approach to advance robust and generalizable detection systems for medical imaging.
Related papers
- iMedImage Technical Report [5.0953390013898705]
Chromosome karyotype analysis is crucial for diagnosing hereditary diseases, yet detecting structural abnormalities remains challenging.<n>We developed iMedImage, an end-to-end model for general medical image recognition, demonstrating strong performance across multiple imaging tasks.
arXiv Detail & Related papers (2025-03-27T03:25:28Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [64.66825253356869]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - Leveraging Medical Foundation Model Features in Graph Neural Network-Based Retrieval of Breast Histopathology Images [1.48419209885019]
We propose a novel attention-based adversarially regularized variational graph autoencoder model for breast histological image retrieval.<n>Our top-performing model, trained with UNI features, achieved average mAP/mMV scores of 96.7%/91.5% and 97.6%/94.2% for the BreakHis and BACH datasets, respectively.
arXiv Detail & Related papers (2024-05-07T11:24:37Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - MammoGANesis: Controlled Generation of High-Resolution Mammograms for
Radiology Education [0.0]
We train a generative adversarial network (GAN) to synthesize 512 x 512 high-resolution mammograms.
The resulting model leads to the unsupervised separation of high-level features.
We demonstrate the model's ability to generate and medically relevant mammograms by achieving an average AUC of 0.54 in a double-blind study.
arXiv Detail & Related papers (2020-10-11T06:47:56Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.