論文の概要: Pre- and Post-Treatment Glioma Segmentation with the Medical Imaging Segmentation Toolkit
- arxiv url: http://arxiv.org/abs/2507.19626v1
- Date: Fri, 25 Jul 2025 18:54:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.860137
- Title: Pre- and Post-Treatment Glioma Segmentation with the Medical Imaging Segmentation Toolkit
- Title(参考訳): 医用イメージングセグメンテーションツールキットを用いた前・後グリオーマ分節
- Authors: Adrian Celaya, Tucker Netherton, Dawid Schellingerhout, Caroline Chung, Beatrice Riviere, David Fuentes,
- Abstract要約: 本稿では,MIST(Messical Imaging Toolkit)の現状について述べる。
MISTの後処理モジュールは幅広い変換をサポートするために大幅に拡張されている。
単純な小オブジェクト除去からより複雑でクラス固有のパイプラインまで,3つの戦略を評価し,BraTSランキングプロトコルを用いてそのパフォーマンスをランク付けする。
- 参考スコア(独自算出の注目度): 1.6492989697868894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation continues to advance rapidly, yet rigorous comparison between methods remains challenging due to a lack of standardized and customizable tooling. In this work, we present the current state of the Medical Imaging Segmentation Toolkit (MIST), with a particular focus on its flexible and modular postprocessing framework designed for the BraTS 2025 pre- and post-treatment glioma segmentation challenge. Since its debut in the 2024 BraTS adult glioma post-treatment segmentation challenge, MIST's postprocessing module has been significantly extended to support a wide range of transforms, including removal or replacement of small objects, extraction of the largest connected components, and morphological operations such as hole filling and closing. These transforms can be composed into user-defined strategies, enabling fine-grained control over the final segmentation output. We evaluate three such strategies - ranging from simple small-object removal to more complex, class-specific pipelines - and rank their performance using the BraTS ranking protocol. Our results highlight how MIST facilitates rapid experimentation and targeted refinement, ultimately producing high-quality segmentations for the BraTS 2025 challenge. MIST remains open source and extensible, supporting reproducible and scalable research in medical image segmentation.
- Abstract(参考訳): 医用画像のセグメンテーションは急速に進んでいるが、標準化されたカスタマイズ可能なツールがないため、厳密な比較は難しいままである。
本稿では,医療画像分割ツールキット(MIST)の現状について述べるとともに,BraTS 2025の前処理および後処理のグリオーマセグメンテーションチャレンジのために設計された,フレキシブルでモジュラーな後処理フレームワークについて述べる。
2024年のBraTS成人グリオーマ治療後セグメンテーションチャレンジでデビューして以来、MISTのポストプロセッシングモジュールは、小さな物体の除去や置換、最大の連結成分の抽出、穴埋めや閉じなどの形態的操作など、幅広い変換をサポートするように大幅に拡張されてきた。
これらの変換はユーザ定義の戦略に構成することができ、最終的なセグメンテーション出力のきめ細かい制御を可能にする。
単純な小オブジェクト除去からより複雑でクラス固有のパイプラインまで,3つの戦略を評価し,BraTSランキングプロトコルを用いてそのパフォーマンスをランク付けする。
この結果から,BRTS 2025の課題に対して,MISTが迅速な実験と改良を促進させ,最終的に高品質なセグメンテーションを創出することを示す。
MISTはオープンソースで拡張可能であり、医療画像セグメンテーションにおける再現可能でスケーラブルな研究をサポートする。
関連論文リスト
- TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation [4.034121387622003]
本稿では,医用画像分割フレームワークTAB Netを提案する。
三重化自己回復モジュール(TAS)と境界対応擬似ラベル監視モジュール(BAP)から構成されている。
我々は,TAB Netが,スクリブルベースの弱教師付きセグメンテーションにおいて,最先端の手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-07-03T07:50:00Z) - MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network [51.68708264694361]
融合因子は、複雑な解剖学的変異や画像のモダリティ制限などの医療画像に影響を与える可能性がある。
医用画像セグメンテーションのためのバックドア・インターベンション最適化ネットワークを提案する。
本手法は, 混乱要因の影響を著しく低減し, セグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2025-05-28T01:40:10Z) - Dynamically evolving segment anything model with continuous learning for medical image segmentation [50.92344083895528]
ダイナミックに進化する医療画像セグメンテーションモデルであるEvoSAMを紹介する。
EvoSAMは、継続的に拡張されるシナリオとタスクの配列から新しい知識を蓄積する。
血管セグメンテーションに関する外科医による実験により、EvoSAMはユーザプロンプトに基づいてセグメンテーション効率を高めることが確認された。
論文 参考訳(メタデータ) (2025-03-08T14:37:52Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models [7.352034931666381]
本稿では,深層学習手法のセグメンテーション性能を高めるための2つの手法を提案する。
まず、利用可能なMRIシーケンスの単純な線形結合に基づく追加入力を組み込む。
第二に、モデルのバッテリの寄与を測るために様々なアンサンブル手法を用いる。
論文 参考訳(メタデータ) (2024-09-12T15:34:31Z) - MIST: A Simple and Scalable End-To-End 3D Medical Imaging Segmentation Framework [1.4043931310479378]
医用イメージングツールキット(MIST)は、深層学習に基づく医用イメージングセグメンテーション手法の一貫性のあるトレーニング、テスト、評価を容易にするように設計されている。
MISTはデータ分析、前処理、評価パイプラインを標準化し、複数のアーキテクチャと損失関数を収容する。
論文 参考訳(メタデータ) (2024-07-31T05:17:31Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through Probabilistic-aware Learning [47.700298779672366]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。